Сложные конструкции скважин на нефть и газ. Скважина. Этапы строительства, виды, назначение

Общие сведения о бурении нефтяных и газовых скважин

1.1. ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Рис. 1. Элементы конструкции скважины

Скважиной называется цилиндрическая горная выработка, сооружаемая без доступа в нее человека и имеющая диаметр во много раз меньше ее длины (Рис. 1).

Основные элементы буровой скважины:

Устье скважины (1) – пересечение трассы скважины с дневной поверхностью

Забой скважины (2) – дно буровой скважины, перемещающееся в результате воздействия породоразрушающего инструмента на породу

Стенки скважины (3) – боковые поверхности буровой скважины

Ось скважины (6) - воображаемая линия, соединяющая центры поперечных сечений буровой скважины

*Ствол скважины (5) – пространство в недрах, занимаемое буровой скважиной.

Обсадные колонны (4) – колонны соединенных между собой обсадных труб. Если стенки скважины сложены из устойчивых пород, то в скважину обсадные колонны не спускают

Скважины углубляют, разрушая породу по всей площади забоя (сплошным забоем, рис. 2 а) или по его периферийной части (кольцевым забоем рис. 2 б). В последнем случае в центре скважины остается колонка породы – керн, которую периодически поднимают на поверхность для непосредственного изучения.

Диаметр скважин, как правило, уменьшается от устья к забою ступенчато на определенных интервалах. Начальный диаметр нефтяных и газовых скважин обычно не превышает 900 мм, а конечный редко бывает меньше 165 мм. Глубины нефтяных и газовых скважин изменяются в пределах нескольких тысяч метров.

По пространственному расположению в земной коре буровые скважины подразделяются (рис. 3):

1. Вертикальнвые;

2. Наклонные;

3. Прямолинейноискривленные;

4. Искривленные;

5. Прямолинейноискривленные (с горизонтальным участком);

Рис. 3. Пространственное расположение скважин



Сложноискривленные.

Нефтяные и газовые скважины бурят на суше и на море при помощи буровых установок. В последнем случае буровые установки монтируются на эстакадах, плавучих буровых платформах или судах (рис. 4).

Рис. 4. Виды буровых скважин



В нефтегазовой отрасли бурят скважины следующего назначения:

1. Эксплуатационные – для добычи нефти , газа и газового конденсата.

2. Нагнетательные – для закачки в продуктивные горизонты воды (реже воздуха, газа ) с целью поддержания пластового давления и продления фонтанного периода разработки месторождений, увеличения дебита эксплуатационных скважин, снабженных насосами и воздушными подъемниками.

3. Разведочные – для выявления продуктивных горизонтов, оконтуривания, испытания и оценки их промышленного значения.

4. Специальные - опорные, параметрические, оценочные, контрольные – для изучения геологического строения малоизвестного района, определения изменения коллекторских свойств продуктивных пластов, наблюдения за пластовым давлением и фронтом движения водонефтяного контакта, степени выработки отдельных участков пласта, термического воздействия на пласт, обеспечения внутрипластового горения, газификации нефтей , сброса сточных вод в глубокозалегающие поглощающие пласты и др.

5. Структурно-поисковые – для уточнения положения перспективных нефте -газоносных структур по повторяющим их очертания верхним маркирующим (определяющим) горизонтам, по данным бурения мелких, менее дорогих скважин небольшого диаметра.

Сегодня нефтяные и газовые скважины представляют собой капитальные дорогостоящие сооружения, служащие много десятилетий. Это достигается соединением продуктивного пласта с дневной поверхностью герметичным, прочным и долговечным каналом. Однако пробуренный ствол скважины еще не представляет собой такого канала, вследствие неустойчивости горных пород, наличия пластов, насыщенных различными флюидами (вода, нефть , газ и их смеси), которые находятся под различным давлением. Поэтому при строительстве скважины необходимо крепить ее ствол и разобщать (изолировать) пласты, содержащие различные флюиды.

Обсадная труба

Рис.5. Обсадная труба в скважине

Крепление ствола скважины производится путем спуска в нее специальных труб, называемых обсадными. Ряд обсадных труб, соединенных последовательно между собой, составляет обсадную колонну. Для крепления скважин применяют стальные обсадные трубы (рис. 5).

Насыщенные различными флюидами пласты разобщены непроницаемыми горными породами - «покрышками». При бурении скважины эти непроницаемые разобщающие покрышки нарушаются и создается возможность межпластовых перетоков, самопроизвольного излива пластовых флюидов на поверхность, обводнения продуктивных пластов, загрязнения источников водоснабжения и атмосферы, коррозии спущенных в скважину обсадных колонн.

В процессе бурения скважины в неустойчивых горных породах возможны интенсивное кавернообразование, осыпи, обвалы и т.д. В ряде случаев дальнейшая углубка ствола скважины становится невозможной без предварительного крепления ее стенок.

Для исключения таких явлений кольцевой канал (кольцевое пространство) между стенкой скважины и спущенной в нее обсадной колонной заполняется тампонирующим (изолирующим) материалом (рис. 6). Это составы, включающие вяжущее вещество, инертные и активные наполнители, химические реагенты. Их готовят в виде растворов (чаще водных) и закачивают в скважину насосами. Из вяжущих веществ наиболее широко применяют тампонажные портландцементы. Поэтому процесс разобщения пластов называют цементированием.

Таким образом, в результате бурения ствола, его последующего крепления и разобщения пластов создается устойчивое подземное сооружение определенной конструкции.

Под конструкцией скважины понимается совокупность данных о числе и размерах (диаметр и длина) обсадных колонн, диаметрах ствола скважины под каждую колонну, интервалах цементирования, а также о способах и интервалах соединения скважины с продуктивным пластом (рис. 7).

Сведения о диаметрах, толщинах стенок и марках сталей обсадных труб по интервалам, о типах обсадных труб, оборудовании низа обсадной колонны входят в понятие конструкции обсадной колонны.

В скважину спускают обсадные колонны определенного назначения: направление, кондуктор, промежуточные колонны, эксплуатационная колонна.

Направление спускается в скважину для предупреждения размыва и обрушения горных пород вокруг устья при бурении под кондуктор, а также для соединения скважины с системой очистки бурового раствора. Кольцевое пространство за направлением заполняют по всей длине тампонажным раствором или бетоном. Направление спускают на глубину от нескольких метров в устойчивых породах, до десятков метров в болотах и илистых грунтах.

Кондуктором обычно перекрывают верхнюю часть геологического разреза, где имеются неустойчивые породы, пласты, поглощающие буровой раствор или проявляющие, подающие на поверхность пластовые флюиды, т.е. все те интервалы, которые будут осложнять процесс дальнейшего бурения и вызывать загрязнение окружающей природной среды. Кондуктором обязательно должны быть перекрыты все пласты, насыщенные пресной водой.

Рис. 7. Схема конструкции скважины



Кондуктор служит также для установки противовыбросового устьевого оборудования и подвески последующих обсадных колонн. Кондуктор спускают на глубину нескольких сотен метров. Для надежного разобщения пластов, придания достаточной прочности и устойчивости кондуктор цементируется по всей длине.

Эксплуатационная колонна спускается в скважину для извлечения нефти, газа или нагнетания в продуктивный горизонт воды или газа с целью поддержания пластового давления. Высота подъема тампонажного раствора над кровлей продуктивных горизонтов, а также устройством ступенчатого цементирования или узлом соединения верхних секций обсадных колонн в нефтяных и газовых скважинах должна составлять соответственно не менее 150-300 м и 500 м.

Промежуточные (технические) колонны необходимо спускать, если невозможно пробурить до проектной глубины без предварительного разобщения зон осложнений (проявлений, обвалов). Решение об их спуске принимается после анализа соотношения давлений, возникающих при бурении в системе «скважина-пласт».

Если давление в скважине Рс меньше пластового Рпл (давления флюидов, насыщающих пласт), то флюиды из пласта будут поступать в скважину, произойдет проявление. В зависимости от интенсивности проявления сопровождаются самоизливом жидкости (газа ) на устье скважины (переливы), выбросами, открытым (неконтролируемым) фонтанированием. Эти явления осложняют процесс строительства скважины, создают угрозу отравлений, пожаров, взрывов.

При повышении давления в скважине до некоторой величины, называемой давлением начала поглощения Рпогл, жидкость из скважины поступает в пласт. Этот процесс называется поглощением бурового раствора. Рпогл может быть близким или равным пластовому, а иногда приближается к величине вертикального горного давления, определяемого весом расположенных выше горных пород.

Иногда поглощения сопровождаются перетоками флюидов из одного пласта в другой, что приводит к загрязнению источников водоснабжения и продуктивных горизонтов. Снижение уровня жидкости в скважине вследствие поглощения в одном из пластов обуславливает понижение давления в другом пласте и возможность проявлений из него.

Давление, при котором происходит раскрытие естественных сомкнутых трещин или образование новых, называется давлением гидравлического разрыва пласта Ргрп. Такое явление сопровождается катастрофическим поглощением бурового раствора.

Характерно, что во многих нефтегазоносных районах пластовое давление Рпл близко к гидростатическому давлению столба пресной воды Рг (далее просто гидростатическое давление) высотой Нж, равной глубине Нп, на которой залегает данный пласт. Это объясняется тем, что давление флюидов в пласте чаще обусловлено напором краевых вод, область питания которых имеет связь с дневной поверхностью на значительных расстояниях от месторождения.

Поскольку абсолютные значения давлений зависят от глубины Н, их соотношения удобнее анализировать, пользуясь величинами относительных давлений, которые представляют собой отношения абсолютных значений соответствующих давлений к гидростатическому давлению Рг, т.е.:

Рпл* = Рпл / Рг;

Ргр* = Ргр / Рг;

Рпогл* = Рпогл / Рг;

Ргрп* = Ргрп / Рг.

Здесь Рпл – пластовое давление; Ргр – гидростатическое давление бурового раствора; Рпогл – давление начала поглощения; Ргрп – давление гидроразрыва пласта.

Относительное пластовое давление Рпл* часто называют коэффициентом аномальности Ка. Когда Рпл* приблизительно равно 1,0, пластовое давление считается нормальным, при Рпл* большем 1,0 – аномально высоким (АВПД), а при Рпл* меньшем 1,0 – аномально низким (АНПД).

Одним из условий нормального неосложненного процесса бурения является соотношение

а) Рпл* < Ргр* < Рпогл*(Ргрп*)

Процесс бурения осложняется, если по каким либо причинам относительные давления окажутся в соотношении:

б) Рпл* > Ргр* < Рпогл*

или

в) Рпл* < Ргр* > Рпогл* (Ргрп*)

Если справедливо соотношение б), то наблюдаются только проявления, если в), то наблюдаются и проявления и поглощения.

Промежуточные колонны могут быть сплошными (их спускают от устья до забоя) и не сплошными (не доходящими до устья). Последние называются хвостовиками.

Принято считать, что скважина имеет одноколонную конструкцию, если в нее не спускаются промежуточные колонны, хотя спущены и направление и кондуктор. При одной промежуточной колонне скважина имеет двухколонную конструкцию. Когда имеются две и более технические колонны, скважина считается многоколонной.

Конструкция скважины задается следующим образом: 426, 324, 219, 146 – диаметры обсадных колонн в мм; 40, 450, 1600, 2700 – глубины спуска обсадных колонн в м; 350, 1500 – уровень тампонажного раствора за хвостовиком и эксплуатационной колонной в м; 295, 190 – диаметры долот в мм для бурения скважины под 219 – и 146 –мм колонны.

1.2. СПОСОБЫ БУРЕНИЯ СКВАЖИН

Бурить скважины можно механическим, термическим, электроимпульсным и другими способами (несколько десятков). Однако промышленное применение находят только способы механического бурения – ударное и вращательное. Остальные пока не вышли из стадии экспериментальной разработки.

1.2.1. УДАРНОЕ БУРЕНИЕ

Ударное бурение. Из его всех разновидностей наибольшее распространение получило ударно-канатное бурение (рис. 8).

Рис. 8. Схема ударно-канатного бурения скважин

Буровой снаряд, который состоит из долота 1, ударной штанги 2, раздвижной штанги-ножниц 3 и канатного замка 4 , спускают в скважину на канате 5, который, огибая блок 6, оттяжной ролик 8 и наравляющий ролик 10, сматывается с барабана 11 бурового станка. Скорость спуска бурового снаряда регулируют тормозом 12. Блок 6 установлен на вершине мачты 18. Для гашения вибраций, возникающих при бурении, применяются амортизаторы 7.

Кривошип 14 при помощи шатуна 15 приводит в колебательное движение балансирную раму 9. При опускании рамы оттяжной ролик 8 натягивает канат и поднимает буровой снаряд над забоем. При подъеме рамы канат опускается, снаряд падает, и при ударе долота о породу последняя разрушается.

По мере углубления скважины канат удлиняют, сматывая его с барабана 11. Цилиндричность скважины обеспечивается поворотом долота в результате раскручивания каната под нагрузкой (во время приподъема бурового снаряда) и скручивания его при снятии нагрузки (во время удара долота о породу).

Эффективность разрушения породы при ударно-канатном бурении прямо пропорциональна массе бурового снаряда, высоте его падения, ускорению падения, числу ударов долота о забой в единицу времени и обратно пропорциональна квадрату диаметра скважины.

В процессе разбуривания трещиноватых и вязких пород возможно заклинивание долота. Для освобождения долота в буровом снаряде применяют штангу-ножницы, изготовленные в виде двух удлиненных колец, соединенных друг с другом подобно звеньям цепи.

Процесс бурения будет тем эффективнее, чем меньшее сопротивление долоту бурового снаряда оказывает накапливающаяся на забое скважины выбуренная порода, перемешанная с пластовой жидкостью. При отсутствии или недостаточном притоке пластовой жидкости в скважину с устья периодически доливают воду. Равномерное распределение частиц выбуренной породы в воде достигается периодическим расхаживанием (приподъемом и опусканием) бурового снаряда. По мере накопления на забое разрушеной породы (шлама) возникает необходимость в очистке скважины. Для этого с помощью барабана поднимают буровой снаряд из скважины и многократно спускают в нее желонку 13 на канате 17, сматываемом с барабана 16. В днище желонки имеется клапан. При погружении желонки в зашламленную жидкость клапан открывается и желонка заполняется этой смесью, при подъеме желонки клапан закрывается. Поднятую на поверхность зашламленную жидкость выливают в сборную емкость. Для полной очистки скважины приходится спускать желонку несколько раз подряд.

После очистки забоя в скважину опускают буровой снаряд, и процесс бурения продолжается.

При ударном бурении скважина, как правило, не заполнена жидкостью. Поэтому, во избежание обрушения породы с ее стенок, спускают обсадную колонну, состоящую из металлических обсадных труб, соединенных друг с другом с помощью резьбы или сварки. По мере углубления скважины обсадную колону продвигают к забою и периодически удлиняют (наращивают) на одну трубу.

Ударный способ более 50 лет не применяется на нефтегазовых промыслах России. Однако в разведочном бурении на россыпных месторождениях, при инженерно-геологических изысканиях, бурении скважин на воду и т.п. находит свое применение.

1.2.2. ВРАЩАТЕЛЬНОЕ БУРЕНИЕ СКВАЖИН

При вращательном бурении разрушение породы происходит в результате одновременного воздействия на долото нагрузки и крутящего момента. Под действием нагрузки долото внедряется в породу, а под влиянием крутящего момента скалывает ее.

Существует две разновидности вращательного бурения – роторный и с забойными двигателями.

При роторном бурении (рис. 9) мощность от двигателей 9 передается через лебедку 8 к ротору 16 - специальному вращательному механизму, установленному над устьем скважины в центре вышки. Ротор вращает бурильную колонну и привинченное к ней долото 1. Бурильная колонна состоит из ведущей трубы 15 и привинченных к ней с помощью специального переводника 6 бурильных труб 5.

Следовательно, при роторном бурении углубление долота в породу происходит при движении вдоль оси скважины вращающейся бурильной колонны, а при бурении с забойным двигателем – невращающейся бурильной колонны. Характерной особенностью вращательного бурения является промывка

При бурении с забойным двигателем долото 1 привинчено к валу, а бурильная колонна – к корпусу двигателя 2. При работе двигателя вращается его вал с долотом, а бурильная колонна воспринимает реактивный момент вращения корпуса двигателя, который гасится невращающимся ротором (в ротор устанавливают специальную заглушку).

Буровой насос 20, приводящийся в работу от двигателя 21, нагнетает буровой раствор по манифольду (трубопроводу высокого давления) 19 в стояк - трубу 17, вертикально установленную в правом углу вышки, далее в гибкий буровой шланг (рукав) 14, вертлюг 10 и в бурильную колонну. Дойдя до долота, промывочная жидкость проходит через имеющиеся в нем отверстия и по кольцевому пространству между стенкой скважины и бурильной колонной поднимается на поверхность. Здесь в системе емкостей 18 и очистительных механизмах (на рисунке не показаны) буровой раствор очищается от выбуренной породы, затем поступает в приемные емкости 22 буровых насосов и вновь закачивается в скважину.

В настоящее время применяют три вида забойных двигателей – турбобур, винтовой двигатель и электробур (последний применяют крайне редко).

При бурении с турбобуром или винтовым двигателем гидравлическая энергия потока бурового раствора, двигающегося вниз по бурильной колонне, преобразуется в механическую на валу забойного двигателя, с которым соединено долото.

При бурении с электробуром электрическая энергия подается по кабелю, секции которого смонтированы внутри бурильной колонны и преобразуется электродвигателем в механическую энергию на валу, которая непосредственно передается долоту.

По мере углубления скважины бурильная колонна, подвешенная к полиспастной системе, состоящей из кронблока (на рисунке не показан), талевого блока 12, крюка 13 и талевого каната11, подается в скважину. Когда ведущая труба 15 войдет в ротор 16 на всю длину, включают лебедку, поднимают бурильную колонну на длину ведущей трубы и подвешивают бурильную колонну с помощью клиньев на столе ротора. Затем отвинчивают ведущую трубу 15 вместе с вертлюгом 10 и спускают ее в шурф (обсадную трубу, заранее установленную в специально пробуренную наклонную скважину) длиной, равной длине ведущей трубы. Скважина под шурф бурится заранее в правом углу вышки примерно на середине расстояния от центра до ее ноги. После этого бурильную колонну удлиняют (наращивают), путем привинчивания к ней двухтрубной или трехтрубной свечи (двух или трех свинченных между собой бурильных труб), снимают ее с клиньев, спускают в скважину на длину свечи, подвешивают с помощью клиньев на стол ротора, поднимают из шурфа ведущую трубу с вертлюгом, привинчивают ее к бурильной колонне, освобождают бурильную колонну от клиньев, доводят долото до забоя и продолжают бурение .

Для замены изношенного долота поднимают из скважины всю бурильную колонну, а затем вновь спускают ее. Спуско-подъемные работы ведут также с помощью полиспастной системы. При вращении барабана лебедки талевый канат наматывается на барабан или сматывается с него, что и обеспечивает подъем или спуск талевого блока и крюка. К последнему с помощью штропов и элеватора подвешивают поднимаемую или спускаемую бурильную колонну.

При подъеме БК развинчивают на свечи и устанавливают их внутри вышки нижними концами на подсвечники, а верхние заводят за специальные пальцы на балконе верхового рабочего. Спускают БК в скважину в обратной последовательности.

Таким образом процесс работы долота на забое скважины прерывается наращиванием бурильной колонны и спуско-подъемными операциями (СПО)для смены изношенного долота.

Как правило, верхние участки разреза скважины представляют собой легкоразмываемые отложения. Поэтому пред бурением скважины сооружают ствол (шурф) до устойчивых пород (3-30 м) и в него спускают трубу 7 или несколько свинченных труб (с вырезанным окном в верхней части) длиной на 1-2 м больше глубины шурфа. Затрубное пространство цементируют или бетонируют. В результате устье скважины надежно укрепляется.

К окну в трубе приваривают короткий металлический желоб, по которому в процессе бурения буровой раствор направляется в систему емкостей 18 и далее, пройдя через очистительные механизмы (на рисунке не показаны), поступает в приемную емкость 22 буровых насосов.

Трубу (колонну труб) 7, установленную в шурфе, называют направлением. Установка направления и ряд других работ, выполняемых до начала бурения , относятся к подготовительным. После их выполнения составляют акт о вводе в эксплуатацию буровой установки и приступают к бурению скважины.

Пробурив неустойчивые, мягкие, трещиноватые и кавернозные породы, осложняющие процесс бурения (обычно 400-800 м), перекрывают эти горизонты кондуктором 4 и цементируют затрубное пространство 3 до устья. При дальнейшем углублении могут встретиться горизонты, также подлежащие изоляции, такие горизонты перекрываются промежуточными (техническими) обсадными колоннами.

Пробурив скважину до проектной глубины, спускают и цементируют эксплуатационную колонну (ЭК).

После этого все обсадные колонны на устье скважины обвязывают друг с другом, применяя специальное оборудование . Затем против продуктивного пласта в ЭК и цементном камне пробивают несколько десятков (сотен) отверстий, по которым в процессе испытания, освоения и последующей эксплуатации нефть (газ ) будут поступать в скважину.

Сущность освоения скважины сводится к тому, чтобы давление столба бурового раствора, находящегося в скважине, стало меньше пластового. В результате создавшегося перепада давления нефть (газ ) из пласта начнет поступать в скважину. После комплекса исследовательских работ скважину сдают в эксплуатацию .

На каждую скважину заводится паспорт, где точно отмечаются ее конструкция, местоположение устья, забоя и пространственное положение ствола по данным инклинометрических измерений ее отклонений от вертикали (зенитные углы) и азимута (азимутальные углы). Последние данные особенно важны при кустовом бурении наклонно-направленных скважин во избежание попадания ствола бурящейся скважины в ствол ранее пробуренной или уже эксплуатирующейся скважины. Фактическое отклонение забоя от проектного не должно превышать заданных допусков.

Буровые работы должны выполняться с соблюдением законов об охране труда и окружающей природной среды. Строительство площадки под буровую, трасс для передвижения буровой установки, подъездных путей, линий электропередач, связи, трубопроводов для водоснабжения, сбора нефти и газа , земляных амбаров, очистных устройств, отвал шлама должны осуществляться лишь на специально отведенной соответствующими организациями территории. После завершения строительства скважины или куста скважин все амбары и траншеи должны быть засыпаны, вся площадка под буровую – максимально восстановлена (рекультивирована) для хозяйственного использования.

1.3. КРАТКАЯ ИСТОРИЯ БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

Первые скважины в истории человечества бурили ударно-канатным способом за 2000 лет до нашей эры для добычи рассолов в Китае.

До середины 19 века нефть добывалась в небольших количествах, в основном из неглубоких колодцев вблизи естественных выходов ее на дневную поверхность. Со второй половины 19 века спрос на нефть стал возрастать в связи с широким использованием паровых машин и развитием на их основе промышленности, которая требовала больших количеств смазочных веществ и более мощных, чем сальные свечи, источников света.

Исследованиями последних лет установлено, что первая скважина на нефть была пробурена ручным вращательным способом на Апшеронском полуострове (Россия) в 1847 г. по инициативе В.Н. Семенова. В США первая скважина на нефть (25м) была пробурена в Пенсильвании Эдвином Дрейком в 1959 г. Этот год считается началом развития нефтедобывающей промышленности США. Рождение российской нефтяной промышленности принято отсчитывать от 1964 г., когда на Кубани в долине реки Кудако А.Н. Новосильцев начал бурить первую скважину на нефть (глубиной 55 м) с применением механического ударно-канатного бурения.

На рубеже 19-20 веков были изобретены дизельный и бензиновый двигатели внутреннего сгорания. Внедрение их в практику привело к бурному развитию мировой нефтедобывающей промышленности.

В 1901 г в США впервые было применено вращательное роторное бурение с промывкой забоя циркулирующим потоком жидкости. Необходимо отметить, что вынос выбуренной породы циркулирующим потоком воды изобрел в 1848 г. французский инженер Фовелль и впервые применил этот способ при бурении артезианской скважины в монастыре св. Доминика. В Росси роторным способом первая скважина была пробурена в 1902 г. на глубину 345 м в Грозненском районе.

Одной из труднейших проблем, возникших при бурении скважин, особенно при роторном способе, была проблема герметизации затрубного пространства между обсадными трубами и стенками скважины. Решил эту проблему русский инженер А.А. Богушевский, разработавший и запатентовавший в 1906 г. способ закачки цементного раствора в обсадную колонну с последующим вытеснением его через низ (башмак) обсадной колонны в затрубное пространство. Этот способ цементирования быстро распространился в отечественной и зарубежной практике бурения .

В 1923 г. выпускник Томского технологического института М.А. Капелюшников в соавторстве с С.М. Волохом и Н.А. Корнеевым изобрели гидравлический забойный двигатель – турбобур, определивший принципиально новый путь развития технологии и техники бурения нефтяных и газовых скважин. В 1924 г. в Азербайджане была пробурена первая в мире скважина с помощью одноступенчатого турбобура, получившего название турбобура Капелюшникова.

Особое место занимают турбобуры в истории развития бурения наклонных скважин. Впервые наклонная скважина была пробурена турбинным способом в 1941 г. в Азербайджане. Совершенствование такого бурения позволило ускорить разработку месторождений, расположенных под дном моря или под сильно пересеченной местностью (болота Западной Сибири). В этих случаях бурят несколько наклонных скважин с одной небольшой площадки, на строительство которой требуется значительно меньше затрат, чем на сооружение площадок под каждую буровую при бурении вертикальных скважин. Такой способ сооружения скважин получил наименование кустового бурения.

В 1937-40 гг. А.П. Островским, Н.Г. Григоряном, Н.В. Александровым и другими была разработана конструкция принципиально нового забойного двигателя – электробура.

В США в 1964 г. был разработан однозаходный гидравлический винтовой забойный двигатель, а в 1966 в России разработан многозаходный винтовой двигатель, позволяющий осуществлять бурение наклонно-направленных и горизонтальных скважин на нефть и газ .

В Западной Сибири первая скважина, давшая мощный фонтан природного газа 23 сентября 1953 г. была пробурена у пос. Березово на севере Тюменской области. Здесь, в Березовском районе зародилась в 1963 г. газодобывающая промышленность Западной Сибири. Первая нефтяная скважина в Западной Сибири зафонтанировала 21 июня 1960 г. на Мулымьинской площади в бассейне реки Конда.

В процессе глубинного бурения нефтяных скважин возникает необходимость в креплении их стенок. Это необходимо выполнять для достижения следующих целей:

Рисунок 1. Схема конструкции скважин.

  • закрепления и цементации неустойчивых горных пород;
  • отделения водоносных слоев;
  • разобщения нефтеносных и газоносных пластов скважины;
  • создания герметичного канала для беспрепятственного поднятия на поверхность нефти и газа;
  • снижения гидравлических потерь.

Разделение и крепление стенок скважины выполняют с использованием обсадных труб, а пространство между обсадными трубами и стенкой выработки цементируют специальным раствором. Этот процесс называют цементацией.

Расположение в скважине обсадных труб, их диаметр, глубина спуска, высота цементации, диаметры буровых долот определяют конструкцию скважины. Сама конструкция — это набор элементов крепления скважины с указанием поперечных размеров, глубины и протяженности, что обеспечивает ее правильную разведку, оценку, бурение, добычу и эксплуатацию. Повышенное внимание уделяется забою.

Разработка и проектирование

Конструкция скважины определяется техническим проектом на разработку, строительство и бурение для конкретного региона. Основной ее целью является беспрепятственное бурение на заданную глубину для вскрытия продуктивных нефтяных и газовых пластов в общей системе добычи и разработки месторождения. Схема конструкции напрямую зависит от ряда факторов, а именно:

  • геологического строения;
  • методов и способов проведения буровых работ;
  • прямого назначения скважины;
  • технологии вскрытия продуктивных пластов;
  • требований техники безопасности.

От правильности проектных решений зависит надежность, бюджетная стоимость, дебет и долгосрочная эксплуатация нефтяной или газовой скважины. Рабочий проект должен содержать полный комплекс решений и обоснований по вопросам крепления скважины, учитывая географическое положение региона и геологические условия проведения буровых работ.

Это в первую очередь обоснование конструкции различных участков скважины, способов и интервалов цементирования обсадной колонны, расчет и выбор материалов для обсадной колонны, принятие технических решений по методам вскрытия пластов нефти и газа, повышение устойчивости ствола, устройство гидроизоляции.

Исходные данные для проектирования и обоснования конструкции должны включать в себя:

  • координаты расположения устья;
  • глубины и способы бурения;
  • диаметры колонн по интервалам и в зависимости от ожидаемого дебета;
  • данные о геологии региона и геологические разрезы;
  • особенности породы применимо к способам бурения;
  • наличие и состав пластовых жидкостей;
  • тип и назначение скважины;
  • профиль;
  • данные об интервалах продуктивных пластов;
  • способы эксплуатации;
  • давления внутри пластов;
  • давления для гидравлического разрыва.

Вернуться к оглавлению

Особенности строения

На рис. 1 представлены различные схемы конструкции скважины:

  • а — профиль скважины;
  • б — концентрическое расположение колонн;
  • в — графическая схема конструкции выработки;
  • г — рабочая схема.

При составлении рабочей схемы в верхней части указывается диаметр каждого ряда обсадных колонн в миллиметрах, а в нижней части указывают глубину монтажа в метрах. Высота подъема цементного раствора показывается штриховкой с указанием конечной точки в метрах. Также на схеме указывается номер долота для производства буровых работ.

Конструкция скважины может включать в себя следующие колонны:

  1. Направление. Эта колонна опускается первой, имеет небольшую глубину и устанавливается до начала буровых работ. Ее функцией является предохранение устья от разрушения, обвала и размыва буровым раствором.
  2. Кондуктор. Эта колонна устанавливается после направления и служит для удержания водоносных горизонтов и слабоустойчивых верхних слоев пород. Далее монтируется башмак. Это утолщенная труба в нижней части кондуктора. При бурении в зонах низких температур с мерзлыми породами направление и кондуктор подбираются с учетом повышения температуры внутри породы.
  3. С целью предотвращения осложнений при бурении в скважину опускают промежуточные колонны, которых может быть несколько.
  4. Завершает эту цепочку эксплуатационная колонна. Она предназначена непосредственно для эксплуатации продуктивных пластов.
  5. Хвостовик является потайной колонной в конструкции, которая необходима для закрепления скважин с большими глубинами.

Нефтяные и газовые скважины представляют собой капитальные дорогостоящие сооружения, служащие много десятилетий. С их помощью добывают нефть, нагнетают в пласты различные агенты, ведут контроль за разработкой месторождений и т.п. Незакрепленный ствол не всегда обеспечивает проведение этих операций. Поэтому возникает необходимость крепить ствол и разобщать (изолировать) пласты, содержащие различные флюиды. С этой целью в скважину опускают обсадные трубы определенного назначения (рис. 4.2):

  • направление - самая большая обсадная колонна, предназначенная для предохранения устья скважины от размыва, предохранения стенок скважины от осыпания, направления промывочной жидкости в желобную систему. В зависимости от прочности пород глубина спуска составляет от 5 до 40 м;
  • кондуктор - изолирует водоносные пласты, перекрывает неустойчивые породы, обеспечивает возможность установки противовыбросового оборудования. Глубина спуска от 200 до 800 м;
  • техническая колонна - служит для перекрытия пластов при трудных геологических условиях бурения (несовместимые по пластовым давлениям пропластки, зоны высокого поглощения, отложения, склонные к набуханию, осыпанию и т.п.);
  • эксплуатационная колонна - необходима для эксплуатации скважины. Она спускается до глубины залегания продуктивного пласта. Ввиду сложности ее назначения большое внимание уделяется прочности и герметичности колонны.

Рис. 4.2. Конструкция скважины

При проектировании рациональной конструкции скважин учитывают:

  • особенности геологического строения месторождения, изоляцию водоносных и газонефтеносных горизонтов друг от друга, а также возможные дебиты и методы эксплуатации скважины;
  • целевое назначение скважины (разведочная, эксплуатационная и т.д.);
  • способ вскрытия продуктивного горизонта и метод извлечения нефти или газа из него;
  • максимальное снижение уровня нефти в колонне в период эксплуатации;
  • минимальный расход металла и цемента без ущерба для последующей эксплуатации.

Проектирование конструкции скважины ведут снизу (после выбора диаметра эксплуатационной колонны) вверх. При этом учитывается, что в газовой скважине:

  • давление устья близко к забойному, что важно при расчете обсадных колонн;
  • происходит значительное охлаждение колонны, растущее с увеличением перепада давлений. Это создает дополнительные напряжения;
  • при значительном увеличении диаметра газовых скважин в отдельных случаях дебит газа может снижаться за счет скопления газа у забоя (Саратовское месторождение);
  • при неудачной конструкции или при некачественном цементировании возникают большие подземные потери газа.

По назначению скважины делят на:

  • поисковые (для поисков нефти и газа);
  • разведочные (бурят на площадях с установленной промышленной нефтегазоносностью с целью подготовки запасов нефти и газа промышленных категорий в необходимом
  • соотношении и сбора исходных данных для составления проекта разработки месторождений);
  • эксплуатационные.

Эксплуатационные скважины , в свою очередь, включают:

  • основной фонд добывающих (для извлечения из залежи нефти, газа, других компонентов) и нагнетательных (для закачки в продуктивные горизонты различных агентов с целью поддержания пластового давления и продления фонтанного периода разработки месторождения) скважин;
  • резервный фонд (для разработки отдельных линз, зон выталкивания и др.);
  • контрольные наблюдательные (для периодического наблюдения за изменением положения водо-, газонефтяного контактов, а также нефтегазоводонасыщенности пласта) и
  • пьезометрические (для систематического измерения пластового давления в законтурной области, газовой шапке и нефтяной зоне пласта) скважины;
  • оценочные (для уточнения параметров и режима пластов);
  • специальные (водозаборные, поглощающие и др.) скважины;
  • скважины-дублеры (для замены ликвидированных добывающих и нагнетательных скважин).

Количество и местоположение эксплуатационных скважин определяется в проектных документах.

: Сверхглубокие скважины

9. Сверхглубокие скважины

Первая американская нефтяная скважина дала нефть с глубины около 20 м. В России первые нефтяные скважины имели глубину менее 100 м. Очень быстро их глубина достигла нескольких сот метров. К концу 60-х годов в СССР средняя глубина скважин для добычи нефти и газа составляла 1710 м. Самая глубокая нефтяная залежь в нашей стране открыта в районе г. Грозного на глубине 5300 м, а промышленный газ получен в Прикаспийской впадине с глубины 5370 м.

Самый глубокозалегающий в Европе газоносный пласт на месторождении Магосса (Северная Италия) залегает на глубине 6100 м. Самая большая глубина в мире, с которой ведется промышленная добыча газа - 7460 м (шт. Техас, США).

Общая тенденция добычи нефти и газа со все более глубоко залегающих горизонтов может быть проиллюстрирована следующими цифрами. Еще 20 лет назад основная добыча нефти (66 %) осуществлялась из самых молодых кайнозойских пород. Из более древних мезозойских пород добывали 19 % нефти, а из самых древних палеозойских пород - 15 %. Сейчас ситуация изменилась: основными поставщиками нефти стали мезозойские породы, на втором месте - породы палеозоя.

Таким образом, одной из задач бурения сверхглубоких скважин является поиск нефтегазоносных горизонтов на больших глубинах. Только сверхглубокое бурение может поставить окончательную точку в споре между сторонниками органической и неорганической гипотез происхождения нефти. Наконец, сверхглубокое бурение необходимо для более детального изучения земных недр. Ведь сегодня мы знаем о далеком космосе во много раз больше, чем о том, что находится под нами в нескольких десятках километров.

Бурение сверхглубоких скважин связано с большими трудностями. С глубиной растет давление и температура. Так, на глубине 7000 м даже гидростатическое давление равно 70 МПа, 8000 м -80 МПа и т.д. А в пласте оно может быть в два раза больше. Как удержать в «бутылке» этого «джина»? Требуются высоконапорные насосы для подачи промывочной жидкости. Что собой должна представлять эта жидкость, если температура на забое скважин достигает 250 °С? Чем вращать многокилометровую колонну бурильных труб? Как вообще применять бурильные трубы, если стальные трубы выдерживают свой вес до глубины 10 км?

На часть поставленных вопросов ответы уже найдены. Для бурения сверхглубоких скважин используют утяжеленную промывочную жидкость, чтобы она «закупоривала» скважину собственным весом. Бурят сверхглубокие скважины с помощью забойных двигателей, а бурильные трубы делают из легкого и прочного алюминиевого сплава.

Эпоха глубокого бурения началась в 1961 г. реализацией американского проекта «Мохол». Скважину заложили на дне Тихого океана вблизи острова Гуаделупе под четырехкилометровым слоем воды. Предполагалось, что скважина, пройдя 150 м рыхлых донных пород и 5,5 км твердых нижележащих, погрузится в мантию - следующий после коры слой нашей планеты. Однако бурение остановилось после первых же 36 метров. Причина заключалась в том, что после извлечения первого керна устье уже начатой скважины отыскать не смогли, несмотря на применение самых современных средств поиска.

В 1968 г. со специально оборудованного бурового судна (рис. 28) была предпринята вторая атака на мантию. Однако в 1975 г., когда были вскрыты верхние базальтовые слои океанского дна, бурение прекратили из-за технических сложностей.

Рис. 28. Общий вид бурового судна:

1 - судно; 2 - грузовой кран; 3 - вертолетная
площадка; 4 - буровая вышка

В дальнейшем бурение сверхглубоких скважин осуществлялось на суше. В 1970 г. была пробурена скважина 1-СЛ-5407 в штате Луизиана глубиной 7803 м.

Наглядное представление о современной сверхглубокой скважине и ее оборудовании можно получить на примере одной из самых глубоких в мире скв. 1-Бейден, пробуренной в штате Охлакома. Глубина скважины 9159 м. Бурение началось в 1970 г. и продолжалось 1,5 года. Высота буровой вышки - 43,3 м, грузоподъемность - 908 т. Мощность буровой лебедки 2000 кВт, а каждого из двух буровых насосов - 1000 кВт. Общая емкость наземной циркуляционной системы для глинистого раствора 840 м\ Устье скважины оборудовано противовыбросовой арматурой, рассчитанной на давление 105,5 МПа.

Конструктивно скважина состоит из шахтного направления диаметром 0,9 м до глубины 18 м, кондуктора диаметром 0,5 м до глубины 1466 м, обсадных труб до глубины 7130 м и эксплуатационных колонн. Всего на скважину было израсходовано около 2200 т стальных обсадных труб, 1705 т цемента и 150 алмазных долот. Полная стоимость проводки скважины составила 6 млн. долларов.

В СССР на начало 1975 г. было десять скважин, глубина которых превысила 6 км. К ним относятся Арал-Сорская в Прикаспийской низменности глубиной 6,8 км, Биикжальская в Азербайджане глубиной - 6,7 км, Синевидная (7,0 км) и Шевченковская (7,52 км) в Западной Украине, Бурунная (7,5 км) на Северном Кавказе и др. Самая глубокая в мире Кольская скважина перешагнула рубеж 12 км.

Газ и нефть являются полезными ископаемыми, из которых производят топливо. Именно такое топливо больше всего потребляет человечество. Нефть стали добывать относительно давно, но эра интенсивной добычи «черного золота» началась в девятнадцатом-двадцатом веке.

Сегодня более 60% мировых запасов нефти сосредоточено на Ближнем Востоке, а ведущими потребителями являются Соединенные Штаты Америки и Европа. С девяностых годов (в связи с развитием альтернативных источников энергии) темпы добычи нефти постепенно снижаются.

Этапы разработки скважин

Выделяют несколько этапов разработки нефтяных скважин:

  1. Освоение объекта. Представляет собой усиленную добычу нефти с минимальной водной насыщенностью, интенсивным снижением давления в пласте, повышением числа скважин и размером показателей нефтеотдачи в лимите 10%. Длительность исследования может составить до 5 лет. Под условием окончания освоения понимается снижение выработки за один год по отношению к общему количеству запасов сырья.
  2. Гарантирование постоянства высоких показателей добычи, лимитированное 3-17%, в зависимости от вязкости нефти. Продолжительность времени выработки может варьироваться от одного года до семи лет. Количество скважин при этом также растет за счет эксплуатации запасов, но происходит закрытие части старых. Это зависит от насыщенности нефти водой, что может составлять до 65%. Таким образом, нефтеотдача может оказаться около 30-50%. Добыча природного ресурса на некоторых выработках выполняется принудительно, способом механической откачки насосами.
  3. Сокращение выработки. Показатели нефтеотдачи падают до 10% за год, а интенсивность добычи сокращается до 1%. Каждая скважина переходит на механический способ выкачки. Число скважин, находящихся в резерве, интенсивно сокращается. Насыщенность водой слоев может достигать 85%. Это самый сложный этап, потому как существует необходимость торможения скорости выкачивания нефти. Рассчитать разницу показателей между прошлым этапом и данным достаточно тяжело, потому как разница коэффициента за несколько лет добычи обычно минимальна. За эти три этапа отдача нефтяных слоев достигает 90% от общего объёма.
  4. Окончательный этап. Забор нефти уменьшается до 1%, а коэффициент заводнённости поднимается на максимальный уровень - от 98%. Завершается выработка нефтяных скважин, после чего они закрываются. Но продолжительность этого этапа может варьироваться и достигать 20 лет.

Конструкция

Конструктивные качества нефтяных скважин обеспечиваются за счет:

  1. Механической устойчивости части пласта, примыкающего к забою.
  2. Возможности спуска в скважину забойного оборудования, предотвращения обрушения пластов.
  3. Крепкой гидродинамической связи между нефтяными пластами и забоем скважины.
  4. Возможности выработки нефти из тех пластов, которые насыщены природным материалом, путем изоляции мест, насыщенных газом и водой, если из них не планируется добыча.
  5. Возможности использования дренажной системы всего нефтенасыщенного слоя.

Типовые конструкции забойных нефтедобывающих скважин

При открытом способе забоя используется следующий метод: обсаживается и цементируется башмак скважины непосредственно перед началом пласта. Далее происходит вскрытие нефтяного пласта, при этом колонна скважины остается открытой. Такая конструкция устанавливается, только если:

  • порода достаточно плотна, однородна и не имеет газовых либо водяных слоев;
  • имеются четкие данные о кровле и подошве скважины еще до установки оборудования и вскрытия слоя;
  • при малой толщине пластов, которые можно не закреплять;
  • если отсутствует необходимость вскрывать резервные пласты рядом.

Достоинством этого способа забоя являются его гидродинамические качества. Такие скважины считаются идеальными образцами. Однако имеются минусы. Существует угроза обвалов, что ограничивает частичное вскрытие резервных пластов за счет воздействия на них буровых установок.

Фильтрационные забои имеют два вида конструкции:

  1. Выработка пробуривается до подошвы слоя, ставится обсадная колонна, в которой имеются отверстия, заранее высверленные против толщи нефтяного слоя, в конце заливается цементом. Такая конструкция идентична с конструкцией открытого забоя, но здесь имеет место более эффективное крепление скважины, что обеспечивает сохранение колонны, если произойдет частичный обвал.
  2. Башмак колонны цементируется еще до достижения кровли пласта. Фильтр с мелкой фракцией отверстий установлен в открытой части слоя, а пространство между ним и колонной герметизируется. Такая конструкция предотвращает попадания в скважину песка.

Конструкция с установленными в забое фильтрами используется значительно реже открытой, исключительно для отсеивания песочных заторов в выработке пластов, склонных к проявлению песка.

Есть еще перфорированные забойные скважины. Такие конструкции распространены очень широко. Показатели использования достигают 90%. При проектировании скважины делается отметка в пласте, на уровень которой пробуривается колонна скважины. Нижняя часть достигает самой продуктивной отметки залежи нефти и исследуется при помощи геофизических средств. Это позволяет определить интервалы, насыщенные водой, газом и нефтью, для дальнейшей четкой эксплуатации объекта. Такая конструкция имеет ряд преимуществ:

  • технологические особенности прокладки скважины и геофизические исследования стали упрощенными;
  • сохраняется эффективная изоляция смежных пластов;
  • существует возможность открыть резервные, насыщенные нефтью пласты;
  • допускается нагрузка на дополнительные метки предзабойной зоны;
  • возможность долгосрочной эксплуатации скважины и сохранение ее бурового сечения.

Такой перфорированный вид забоя не защитит скважину от появления песчаных заторов в слоях, склонных к проявлению такового. Чтоб обеспечить защиту, необходимо ставить дополнительные фильтры с малой фракцией отверстий, чтоб задержать мелкие частицы. Однако при этом резко возрастает сопротивление фильтров к поступающей пластовой жидкости.

Последовательность операций при бурении скважин

При бурении нефтяных скважин последовательность операций такова:

  1. Порода разрушается с помощью бурового механизма, после чего осуществляется заглубление колонны скважины.
  2. Разрушенные части удаляются из отверстия земли на поверхность.
  3. Устанавливается нефтяная скважина, после чего укрепляется цементом на определенном уровне.
  4. Проводятся геофизические исследования и замеры.
  5. Колонна спускается до метки нефтенасыщенного пласта, который вскрывается, и происходит выкачка ресурса.

Строительство

Начальный этап строительства нефтяных скважин предусматривает выработку породы глубиной и диаметром 30 м и 40 см соответственно. В самый низ опускается труба, которая должна указывать направление бурения. Околотрубное пространство цементируется, после чего в трубу помещается буровая скважина и опускается уже с меньшим диаметром на 500-800 метров в рабочем порядке. Этот участок разрабатывается и цементируется для изоляции неустойчивых слоев породы.

Далее процесс бурения становится более сложным, а достижение рабочей глубины нефтяного слоя существенно замедляется. Это зависит от того, что иногда эффективные пласты располагаются в виде нескольких слоев, и нефтедобыча должна осуществляться из более глубокого резервного участка. В такой ситуации внедряют посредственную колонну, которая цементируется по наружной части.

После достижения необходимого рабочего уровня на него устанавливают главную эксплуатационную колонну, которая предназначена не только для выкачки газа и нефти, но и для введения необходимого количества воды, чтоб достичь нужного давления. На ее боковых стенках имеются отверстия, цементный слой отличен от слоев других колонн, в ней применяются дополнительные оснастки: центраторы, обратные клапана, пакеры и т. д., чем колонна отличается от обычных.

Эксплуатация

Эксплуатация нефтяных скважин зависит от давления в пластах и делится на несколько способов:

  1. Фонтанный. Осуществляется за счет давления газа и воды в межпластовом пространстве. Является самым распространенным и экономным видом добычи.
  2. Насосный. Осуществляется с помощью насосных установок, которые перегоняют нефть непосредственно в скважину.
  3. Газолифтный. Осуществляется с помощью введения в пласт газа высокого давления из-за отсутствия такового в залежах.

Виды режимов эксплуатации залежей

Разделяют следующие виды режимов эксплуатации скважин.

Водонапорный режим предусматривает высасывание и перемещение нефтяных залежей по открытым пространствам между пластами за счет контактирующей с ними воды. Режимы делятся на:

  • Жесткий: нефть к скважинам подходит с помощью подпорки межпластовых вод. Это позволяет увеличить коэффициент нефтеотдачи.
  • Упругий: предусматривает упругое сжатие водных ресурсов, при котором накапливается энергия, что позволяет расширить межпластовое породное пространство и передвижение ресурса к нефтяной скважине.

Компании, специализирующиеся в данной области, могут использовать различные методы, но многое зависит от типа скважины.

Газонапорный режим схож с водонапорным, но эксплуатация выработки осуществляется в верхних слоях путем давления газового пространства. За счет этого газ вытесняет нефтяные залежи на поверхность к скважине. Но если залежи газа расположены вблизи скважины, они способны проникнуть в нее, что значительно снижает приток нефти. Поэтому есть риск снижения показателей коэффициента полезной добычи.

Растворенный газ используется в нефтяных залежах, в которых нет газа и мало воды. Для выдавливания нефти используют растворенный газ. Он выделяется из нефтяных месторождений и распространяется по пустотам. Газ вытесняет нефть частично в связи с малым давлением и энергией газа между пластами. Коэффициент нефтеотдачи при таком режиме довольно низок.

Гравитационный режим предусмотрен тогда, когда в пластах полностью отсутствует какая-либо энергия. Выработка нефти происходит только лишь за счет силы тяжести самой нефти с помощью наклонных буровых скважин.

Бурение нефтяных и газовых скважин

В зависимости от местонахождения пластов, бурение может быть вертикальным, горизонтальным, наклонным. После подготовки территории и оформления документов начинаются подготовительные работы.

С помощью бурильной техники ствол скважины внедряется в породу на определенную глубину, трубы объединяются в колонны, после чего закрепляются цементом во избежание обвала породы. Когда колонна достигла рабочей зоны, вскрывается нефтяной пласт и начинается непосредственный процесс откачки сырья.

Технология бурения

Бурение выработок - очень сложная технологическая операция, которая предусматривает несколько последующих действий. С помощью буровой установки в земную породу вводится сверхпрочный ствол. Технология бурения нефтяных скважин такова:

  1. Ведение выработки осуществляется таким образом, что происходит разрушение породы посредством мощной буровой отдачи.
  2. Устраняются из скважины лишние части пробуренной породы.
  3. Укрепляется ствол выработки обсадными колоннами.
  4. Исследуются породы геофизическим методом, определяется направление бурения.
  5. Происходит спуск на нужную рабочую глубину и цементирование конечной колонны.

Технология бурения нефтяных и газовых скважин предусматривает два способа:

  1. Механический - самый распространенный. С помощью мощных пневмомолотов разрушается слой земли, лишняя порода убирается посредством бурового раствора или газа. Он делится на подвиды: вращательный, ударный.
  2. Немеханический:
  • термический;
  • взрывной;
  • гидравлический;
  • электроимпульсный.

Бурение производится с помощью специализированных буровых установок, профессионального инструмента и комплекса наземного оборудования, используемого для установки, выкачки и обслуживания станций.

Установка состоит из: оборудования для спускоподъёмных операций, буровой вышки, вышечного сооружения, силового привода, наземного оборудования, системы подачи бурового раствора. Успешное завершение технологического процесса напрямую зависит от свойств бурового раствора, который готовится на основе воды либо нефти.

Первая нефтяная скважина в Баку

Интересным фактом является то, что первую в мире нефтяную выработку установили в Баку, когда город входил в состав России. Именно бакинскими учеными был разработан наклонный метод бурения, который используют в мире повсеместно. В Баку была построена первая нефтяная скважина в 1846 году. Это предусматривает размещение месторождения на большом расстоянии от насосной установки. Был разработан метод, при котором буровые насосы разветвляются, что позволяет выкачивать нефть из нескольких источников одновременно. Таким образом, количество добытой нефти в районе при помощи буровых установок к 1890 году составило почти семнадцать миллионов баррелей. И уже к 1901 году мировой процент добычи нефти в этом регионе составил 95%.