Предел или лимит Хейфлика или Hayflick limit. Лимит хейфлика и клеточные основы старения Сколько раз делится клетка

Мысль о том, что старение может быть заложено с момента рождения, была высказана немецким ученым-дарвинистом Августом Вейсманом (Friedrich Leopold August Weismann, 1834-1914). В своей знаменитой лекции, прочитанной в 1891 году, Вейcман выдвинул предположение, что смерть от старости возникла в ходе эволюции: <Я рассматриваю смерть не как первичную необходимость, а как нечто приобретенное вторично в процессе адаптации:>.

Подходы к классификации теорий старения

Теории, объясняющие старение организмов можно классифицировать различными способами.
Например, существует разделение на три группы: генетические теории, в которых генно-контролируемые запрограммированные <биологические часы>, такие как теломеры регулируют рост, зрелость и старость, нейроэндокринные теории и теории накопления повреждений. Вообще говоря, это разделение довольно условное, потому как все эти механизмы важны и взаимосвязаны.

Также выделяют 2 большие группы: стохастические (вероятностные) теории и теории программированного старения.
Можно классифицировать теории по уровню организации живой материи.
По мнению В.Н. Анисимова, руководителя Российского Геронтологического Общества, наиболее яркими теориями остаются выдвинутая в 1956 г. Д. Харманом свободнорадикальная теория (Harman, 1956, 1998), теория клеточного (репликативного) старения Л. Хейфлика (Hayflick, Moorhead, 1961; Hayflick, 1998), теломерная теория А.М.Оловникова (Оловников, 1971; Olovnikov, 1996), элевационная теория старения В.М. Дильмана (Дильман, 1987; Dilman, 1971, 1994) и теория расходуемой сомы Т. Кирквуда (Kirkwood, 1997, 2002). выдвинутая в 1956 г. Д. Харманом свободнорадикальная теория, теория клеточного (репликативного) старения Л. Хейфлика и теломерная теория А. М. Оловникова, элевационная теория старения В. М. Дильмана.

Классификация теорий стохастического старения

(Schulz-Aellen, 1997)

  • Теория cоматических мутаций - Соматические мутации нарушают генетическую информацию и уменьшают функцию клеток
  • Катастрофа ошибок - Ошибки процессов транскрипции и/или трансляции уменьшают эффективность клеток
  • Повреждения ДНК, репарация ДНК - Повреждения ДНК постоянно репарируются различными механизмами. Эффективность репарации положительно корелирует с продолжительностью жизни и уменьшается с возрастом
  • Повреждения белков - Конформационные нарушения белков и ферментов (перекрестные сшивки) повреждают функцию клетки
  • Перекрестные сшивки - Химические перекрестные сшивки важных макромолекул (например, коллагена) приводят к нарушениям функции клеток и тканей
  • Износ - Накопление повреждений в повседневной жизни уменьшает эффективность организма

Классификация теорий программированного старения

(Schulz-Aellen, 1997)

  • Генетические теории - Старение вызывается запрограммированными изменениями экспрессии генов, или экспрессией специфических белков
  • Гены смерти - Существуют гены клеточной гибели
  • Избирательная гибель - Гибель клетки обусловлена наличием специфических мембранных рецепторов
  • Укорочение теломер - Укорочение теломер с возрастом in vitro и in vivo приводит к нестабильности хромосом и гибели клеток
  • Нарушения дифференцировки - Ошибки в механимзах активации-репрессии генов, приводящие к синтезу избыточных, несущественных или ненужных белков
  • Накопление <загрязнений> - Накопление отходов метаболизма снижает жизнеспособность клеток
  • Нейроэндокринные теории - Недостаточность нервной и эндокринной систем в поддержании гомеостаза. Потеря гомеостаза приводит к старению и смерти
  • Иммунологическая теория - Определенные аллели могут увеличивать или сокращать продолжительность жизни.
  • Метаболические теории - Долголетие обратно пропорционально скорости метаболизма
  • Свободно-радикальная теория - Долголетие обратно пропорционально степени повреждения свободными радикалами и прямо пропорционально эффективности антиокислительных систем
  • Часы старения - Старение и смерть являются результатом предопределенного биологического плана
  • Эволюционные теории - Естественный отбор устраняет индивидуумов после того, как они произведут потомство

Классификация важнейших теорий старения по уровню интеграции

(Yin, Chen, 2005)

Организменный уровень интеграции
Теория изнашивания - Sacher, 1966
Теория катастрофы ошибок - Orgel, 1963
Теория стрессового повреждения - Stlye, 1970
Теория аутоинтоксикации - Metchnikoff, 1904
Эволюционная теория (теория программированного старения) - Williams, 1957
Теория сохранения информации (теория программированного старения)

Органный уровень
Эндокринная теория - Korenchevsky, 1961
Иммунологическая теория - Walford, 1969
Торможение головного мозга

Клеточный уровень
Теория клеточных мембран - Zg-Nagy, 1978
Теория соматических мутаций - Szillard, 1959
Митохондриальная теория - Miquel et al., 1980
Митохондриально-лизосомальная теория - Brunk, Terman, 2002
Теория пролиферативного лимита клетки (теория программированного старения) - Hayflick, Moorhead, 1961

Молекулярный уровень
Теория накопление повреждений ДНК - Vilenchik, 1970
Теория следовых элементов - Eichhorn, 1979
Свободно-радикальная теория - Harman, 1956
Теория поперченных сшивок - Bjorksten, 1968
Теория окислительного стресса - Sohal, Allen, 1990; Yu, Yang, 1996
Теория неэнзиматической гликозиляции - Cerami, 1985
Теория карбонильной интоксикации - Yin, Brunk, 1995
Теория катастрофы загрязнения - Terman, 2001
Теория генных мутаций
Теория укорочения теломер (теория программированного старения) - Оловников, 1971

Прочие подходы
Cтарение как энтропия - Sacher, 1967; Bortz, 1986
Математические теории и различные унифицированные теории - Sohal, Alle, 1990;
Zg-Nagy, 1991; Kowald, Kirkwood, 1994

Свободнорадикальная теория старения Дэнхема Хармана

Теория клеточного старения Леонарда Хейфлика

Элевационная теория старения

Выдвинута и обоснована в начале 50-х годов прошлого века ленинградским ученым Владимиром Дильманом. Согласно этой теории, механизм старения начинает свою работу с постоянного возрастания порога чувствительности гипоталамуса к уровню гормонов в крови. В итоге увеличивается концентрация циркулирующих гормонов. Как результат, возникают различные формы патологических состояний, в том числе характерные для старческого возраста: ожирение, диабет, атеросклероз, канкриофилия, депрессия, метаболическая имуннодепрессия, гипертония, гиперадаптоз, автоиммунные заболевания и климакс. Эти болезни ведут к старению и в конечном итоге к смерти.
Другими словами, в организме, существуют большие биологические часы, которые отсчитают отпущенное ему время жизни от рождения до смерти. Эти часы в определенный момент запускают деструктивные процессы в организме, которые принято называть старением.
По Дильману, старение и связанные с ним болезни - это побочный продукт реализации генетической программы онтогенеза - развития организма.
Из онтогенетической модели следует, что если стабилизировать состояние гомеостаза на уровне, достигаемом к окончанию развития организма, то можно затормозить развитие болезней и естественных старческих изменений и увеличить видовые пределы жизни человека.
Скачать книгу В.Дильмана "Большие биологические часы"

Теория расходуемой (одноразовой) сомы

Теория перекрестных сшивок

Этот механизм старения немного похож на воздействие свободных радикалов. Только роль агрессивных веществ здесь играют сахара, в первую очередь - всегда присутствующая в организме глюкоза. Сахара могут вступать в химическую реакцию с различными белками. При этом, естественно, функции этих белков могут нарушаться. Но что гораздо хуже, молекулы сахаров, соединяясь с белками, обладают способностью <сшивать> молекулы белков между собой. Из-за этого клетки начинают хуже работать. В них накапливается клеточный мусор.
Одно из проявлений такой сшивки белков - потеря тканями эластичности. Внешне наиболее заметным оказывается появление на коже морщин. Но гораздо больший вред приносит потеря эластичности кровеносных сосудов и лёгких. В принципе, у клеток есть механизмы для разрушения подобных сшивок. Но этот процесс требует от организма очень больших энергозатрат.
Сегодня уже существуют лекарственные препараты, которые разбивают внутренние сшивки и превращают их в питательные вещества для клетки.

Теория ошибок

Гипотеза <старения по ошибке> была выдвинута в 1954 г. американским физиком М. Сциллардом. Исследуя эффекты воздействия радиации на живые организмы, он показал, что действие ионизирующего излучения существенно сокращает срок жизни людей и животных. Под воздействием радиации происходят многочисленные мутации в молекуле ДНК и инициируются некоторые симптомы старения, такие как седина или раковые опухоли. Из своих наблюдений Сцилард сделал вывод, что мутации являются непосредственной причиной старения живых организмов. Однако он не объяснил факта старения людей и животных, не подвергавшихся облучению.
Его последователь Л. Оргель считал, что мутации в генетическом аппарате клетки могут быть либо спонтанными, либо возникать в ответ на воздействие агрессивных факторов - ионизирующей радиации, ультрафиолета, воздействия вирусов и токсических (мутагенных) веществ и т.д. С течением времени система репарации ДНК изнашивается, в результате чего происходит старение организма.

Теория апоптоза (самоубийства клеток)

Академик В.П. Скулачев называет свою теорию теорией клеточного апоптоза. Апоптоз (греч. <листопад>) - процесс запрограммированной гибели клетки. Как деревья избавляются от частей, чтобы сохранить целое, так и каждая отдельная клетка, пройдя свой жизненный цикл, должна отмереть и ее место должна занять новая. Если клетка заразится вирусом, или в ней произойдет мутация, ведущая к озлокачествлению, или просто истечет срок ее существования, то, чтобы не подвергать опасности весь организм, она должна умереть. В отличие от некроза - насильственной гибели клеток из-за травмы, ожога, отравления, недостатка кислорода в результате закупоривания кровеносных сосудов и т.д., при апоптозе клетка аккуратно саморазбирается на части, и соседние клетки используют ее фрагменты в качестве строительного материала.
Самоликвидации подвергаются и митохондрии - изучив этот процесс, Скулачев назвал его митоптозом. Митоптоз происходит, если в митохондриях образуется слишком много свободных радикалов. Когда количество погибших митохондрий слишком велико, продукты их распада отравляют клетку и приводят к ее апоптозу. Старение, с точки зрения Скулачева, - результат того, что в организме гибнет больше клеток, чем рождается, а отмирающие функциональные клетки заменяются соединительной тканью. Суть его работы - поиск методов противодействия разрушению клеточных структур свободными радикалами. По мнению ученого, старость - это болезнь, которую можно и нужно лечить, программу старения организма можно вывести из строя и тем самым выключить механизм, сокращающий нашу жизнь.
По мнению Скулачева, главная из активных форм кислорода, приводящих к гибели митохондрий и клеток - перекись водорода. В настоящее время под его руководством проходит испытания препарат SKQ, предназначенный для предотвращения признаков старения.
Интервью "Новой Газете"

Адаптационно-регуляторная теория

Модель старения, разработанная выдающимся украинским физиологом и геронтологом В.В. Фролькисом в 1960-70-х гг., основана на широко распространенном представлении о том, что старость и смерть генетически запрограммированы. <Изюминка> теории Фролькиса состоит в том, что возрастное развитие и продолжительность жизни определяются балансом двух процессов: наряду с разрушительным процессом старения развертывается процесс <антистарения>, для которого Фролькис предложил термин <витаукт> (лат. vita - жизнь, auctum - увеличивать). Этот процесс направлен на поддержание жизнеспособности организма, его адаптацию, увеличение продолжительности жизни. Представления об антистарении (витаукте) получили широкое распространение. Так, в 1995 г. в США состоялся первый международный конгресс по этой проблеме.
Существенным компонентом теории Фролькиса является разработанная им генорегуляторная гипотеза, по которой первичными механизмами старения являются нарушения в работе регуляторных генов, управляющих активностью структурных генов и, в результате, интенсивностью синтеза закодированных в них белков. Возрастные нарушения генной регуляции могут привести не только к изменению соотношения синтезируемых белков, но и к экспрессии ранее не работавших генов, появлению ранее не синтезировавшихся белков и, как результат, к старению и гибели клеток.
В.В.Фролькис полагал, что генорегуляторные механизмы старения являются основой развития распространенных видов возрастной патологии - атеросклероза, рака, диабета, болезней Паркинсона и Альцгеймера. В зависимости от активации или подавления функций тех или иных генов и будет развиваться тот или иной синдром старения, та или иная патология. На основе этих представлений была выдвинута идея генорегуляторной терапии, призванной предупреждать сдвиги, лежащие в основе развития возрастной патологии.

Редусомная теория Оловникова

Покрытая белками линейная молекула ДНК редусомы - это копия сегмента хромосомной ДНК. гнезде. Подобно теломерной ДНК линейная ДНК редусомы с течением времени укорачивается. Поэтому крошечные редусомы прогрессирующе уменьшаются в размерах; отсюда и их название. Вместе с убылью ДНК в редусоме уменьшается и количество содержащихся в ней разных генов. Укорочение молекул редусомной ДНК (и вызванное этим изменение набора генов в редусомах, меняет с возрастом уровень экспрессии различных хромосомных генов и благодаря этому служит ключевым средством измерения биологического времени в индивидуальном развитии.

Введение

Проблема старения организма и продления жизни человека является одной из важнейших тем, интересовавших практически любую человеческую цивилизацию. Изучение механизмов старения человеческого организма остается крайне актуальной проблемой и в настоящее время. Укажем лишь на один демографический показатель: к началу XXI века в развитых странах доля населения, достигшего возраста 65 лет и более составляет 10-14%. По имеющимся прогнозам через 20 лет этот показатель удвоится. Старение населения ставит перед современной медициной множество пока еще не решенных задач, в том числе - и задачу по продлению жизни в состоянии активной старости на значительный промежуток времени. Решать эту грандиозную задачу, не имея представления о механизмах старения организма, не возможно. Мы остановимся лишь на обсуждении механизмов старения клеток, причем тех из них, которые детерминированы генетически, то есть, присущи организму человека от его рождения и до смерти.

Лимит Хейфлика

В 1961 году американский цитолог Леонард Хейфлик провел совместно с другим ученым П. Мурхедом эксперименты по культивации фибробластов человеческих эмбрионов. Эти исследователи помещали в питательную среду отдельные клетки (перед инкубацией ткань обрабатывалась трипсинов, благодаря чему ткань диссоциировалась на отдельные клетки). Кроме того, Л. Хейфлик и П. Мурхед применяли в качестве питательной среды раствор аминокислот, солей и некоторых других низкомолекулярных компонентов.

В культуре ткани начиналось деление фибробластов, и когда клеточный слой достигал определенного размера, его делили пополам, вновь обрабатывали трипсином и переносили в новый сосуд. Подобные пассажи продолжались до тех пор, пока деление клеток не прекращалось. Регулярно это явление наступало после 50 делений. Переставшие делиться клетки через некоторое время погибали. Опыты Л. Хейфлика и П. Мурхеда были многократно повторены в самых различных лабораториях во многих странах мира. Во всех случаях результат был один и тот же: делящиеся клетки (причем не только фибробласты, но и другие соматические клетки) прекращали свое деление после 50-60 пересевов. Критическое число делений соматических клеток получило название «лимита Хейфлика». Интересно, что для соматических клеток различных видов позвоночных животных лимит Хейфлика оказался различным и коррелировался с продолжительностью жизни этих организмов.

Как выйти за предел Хейфлика, или все способы продления жизни

Текст: Надежда Маркина

ПОКА ЛУЧШЕ ВСЕГО ЭТО ПОЛУЧАЕТСЯ У КРУГЛЫХ ЧЕРВЕЙ-НЕМАТОД. УЧЕНЫЕ УВЕЛИЧИЛИ СРОК ИХ ЖИЗНИ В ДЕСЯТЬ РАЗ.

Исследования демографов убедительно показывают: продолжительность жизни человека зависит главным образом от социальных факторов – уровня жизни и состояния медицины в стране, где он живет. В Японии, например, средняя продолжительность жизни за последние 20 лет выросла до 82,15 года, а в Королевстве Свазиленд тоже выросла – до 32,3. Поэтому подсчитать биологический «срок эксплуатации» человека трудно, тем более что боль-

шинство пожилых людей умирает от болезней, а не от старости. Большинство, но не все. В XIX веке ученые открыли закон, который носит имена Гомперца и Мейкхема и описывает зависимость смертности от возраста. Поначалу с увеличением возраста смертность растет экспотенциально. Кажется очевидным, что 70-летних умирает больше, чем 60-летних, а 80-летних – больше, чем 70-летних. Но в описывающей закон кривой есть одна загадка – после рубежа в 90 лет она выходит на плато. Это означает, что если человек перешагнул

(Родившаяся сегодня девочка может прожить в среднем 71 год. В начале XXI века этот показатель составлял 68 лет. Мужчины по-прежнему живут меньше женщин – в среднем на 5 лет. Самые высокие показатели продолжительности жизни в Японии: 86 лет для женщин и 79 лет для мужчин.)

этот возраст, то вероятность смерти – в 90, в 100 и более лет для него примерно одинакова. Этот феномен долгожителей ученые объяснить не могут. Скорее всего, на плато выходят счастливчики, которым удалось избежать старческих болезней. А можно предположить и то, что процессы старения в этом преклонном возрасте как бы останавливаются. Впрочем, старение задает исследователям еще больше загадок, чем долгожительство. Об этом свидетельствует в первую очередь само количество теорий старения.

Старение – это... ...программа

Такой постулат лежит в основе теории одного из главных специалистов по старению в России Владимира Скулачева. Он ввел понятие «феноптоз» – запрограммированная смерть организма, по аналогии с апоптозом, запрограммированной смертью клетки. Казалось бы, зачем нужна прграмма на смерть? Затем, что это выгодно популяции и виду. По выражению Скулачева, в природе действует «самурайский закон биологии», который гласит: «Лучше умереть, чем ошибиться». Это означает, что организм, который уже не нужен Но раз старение – это программа, считает Владимир Скулачев, значит «её можно отменить». В подтверждение своей теории он приводит примеры нестареющих организмов в природе, у которых смерть происходит без старения.

Другие ученые – приверженцы эволю ционной теории старения подчеркивают, что организм делает выбор между ремонтом и размножением. Ремонт клеток и тканей требует много энергии – дешевле побыстрее размножиться.

...накопление повреждений

Так как с возрастом организм начинает хуже работать, значит, в нем что-то портится. Вопрос, что именно. Одни специалисты считают самым главным то, что портятся белки. Например, в молекулах коллагена, а это около трети всех структурных белков в организме, между длинными спиральными нитями образуются поперечные «мостики», которые сшивают нити между собой, в результате ткани утрачивают эластичность. На уровне клетки портятся митохондрии

– клеточные энергетические подстанции. Это может вести к тому, что клетка встает на путь запрограммированной смерти. Теломеры – это ДНК-участки на концах хромосом. Состоят они из серии повторяющихся последовательностей нуклеотидов, причем у всех позвоночых эти повторы имеют одно и то же строение (ТТА ГГГ). Теломеры укорачиваются при каждом делении клетки и таким образом служат счетчиком числа клеточных делений. Счетчик работает потому, что фермент ДНК – полимераза, удваивающий ДНК при делении клетки, не может считывать информацию с ее конца, так что каждая

следующая копия ДНК становится короче, чем предыдущая. По данным Дэвида Синклера из Гарварда, ключевую роль в механизмах генной регуляции играют белки сиртуины. Это ферменты, участвующие в процессе упаковки молекулы ДНК в белковую оболочку в ядре клетки в виде хроматина. В таком виде гены неактивны. Чтобы с них считалась генетическая информация, они должны распаковаться. Сиртуины препятствуют тому, чтобы распаковывались гены, которые в данном месте и в данный момент работать не должны. Сиртуины выполняют роль надзирателей: следят за тем, чтобы молчащие гены молчали и не вздумали возникать там, где не надо. Но помимо регулировки они участвуют и в ремонте поврежденной ДНК. Совмещение двух должностей – регулировщика и ремонтника – не идет во благо клетке. С возрастом повреждения ДНК накапливаются, сиртуины оказываются перегружены ремонтом и уже не справляются с генной регуляцией. По мере того, как организм стареет, повреждений ДНК становится больше, и сиртуинам приходится все чаще бросаться на ремонт. Если регулировщик все время отлучается со своего поста, чтобы чинить автомобили, вместо того чтобы регулировать движение, ничем хорошим это не кончится. Генная регуляция разлаживается. Распакованные без надзора гены уже не могут запаковаться и замолчать.

Гиганские черепахи (Megalochelys gigantea).

Живут до 150 лет, сохраняют способность

к размножению. Умирают оттого, что их

панцирь становится слишком тяжелым.

Атлантический лосось (Salmo salar).

Обычно ускоренно стареет «по програм-

ме» – сразу после нереста, а его разлага-

ющиеся остатки привлекают рачков, кото-

рые служат пищей малькам лосося.

Он «приносит себя в жертву».

Странствующие альбатросы (Diomedea

exulans). Живут в среднем 50 лет, не

старея, откладывают яйца. А потом

умирают, внезапно, по неизвестной

причине.

В процессе работы митохондрий в них образуются смертельно опасные соединения – активные формы азота и кислорода. Это свободные радикалы, обладающие неспаренным электроном. Они очень реакционноспособны и нападают на первую попавшуюся молекулу без разбора, будь то ДНК или бе лок. Конечно, после такого насилия молекулы становятся неадекватными и работают неправильно.

...порча генов

Наконец, в старости появляются генетические повреждения. После того как организм перестал размножаться, он накапливает вредные мутации. Уже нет риска передать их потомству, значит, можно «портиться» сколько угодно. Вредные мутации могут вести и к нарушению синтеза белков, и к раку, например. К генетическим факторам старения многие относят и пока еще загадочные мо бильные элементы – короткие последовательности, которые перемещаются по молекуле ДНК и влияют на работу генов. С возрастом их становится больше. А есть мутации, непосредственно вызывающие преждевременное старение – прогерию или, наоборот, «вечную молодость»....ра зрегуляция

Около десяти лет назад американские ученые выяснили, почему стареют дрожжи – у них ломается механизм регуляции генов. Новое исследование показало: у млекопитающих все точно так же. Это причина универсальна, говорят ученые. Значит, причины старения могут быть не генетическими, а эпигенетическими, то есть лежащими рядом с генами.

...порча «упаковки » ДНК

В ядре клетки молекула ДНК намотана на белки-гистоны. Эти белки могут видоизменяться, от чего зависит плотность упаковки. С возрастом хроматин в ядре становится более рыхлым, а это приводит к тому, что начинают работать ненужные и вредные гены. Упаковка плотная – гены не работают, упаковка

рыхлая – гены работают.

...окисление свободными радикалами

Одна из самых популярных теорий старения – свободнорадикальная. Ее автор Дэнхен Харман в 1956 году предположил: мы стареем потому, что наши молекулы подвергаются действию вылетающих из митохондрий действует мощная система антиоксидантной защиты. Но с возрастом она слабеет, из-за чего повреждения, наносимые свободными радикалами, становятся все многочисленнее.

Корни эволюционного подхода к старению лежат в работах немецкого биолога

Августа Вайсманна.

Он первый предположил, что старение происходит по эволюционной

программе, которая удаляет из популяции старых и ненужных особей.

Ключом к этому Вайсманн считал ограниченную способность клеток

к делению.

НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ФИЗИЧЕСКОГО ВОСПИТАНИЯ И СПОРТА УКРАИНЫ

КАФЕДРА биологии человека

РЕФЕРАТ

ТЕМА: « Обмен веществ и энергии при старении»

Студент первого курса

55 группы

Ярмоша Игоря

Киев-2011

План

    Вступление

    Свободные радикалы

    Лимит Х ейфлика

    Гены старения

    Выводы

    Литература

Вступление

Существует около сотни гипотез объясняющих природу старения, однако, научным сообществом из всего этого многообразия признано не более десятка концепций.

Большинство специалистов сходится во мнении, что старение является феноменом, включающим целый комплекс взаимозависимых процессов. Стабилизация одной составляющей комплекса, приведет лишь к сравнительно незначительному продвижению в направлении решения основной проблемы.

То есть, скорее всего, нет единой причины по которой мы стареем, (допустим, износ или самоубийство клеток), а есть целый ряд причин, суммарное действие которых и вызывает разрушительные последствия, которым придуман обобщенный термин - старение. Причем, такие разрушительные изменения происходят на клеточном, организменном, и молекулярном уровнях. Вероятно, многие конкурирующие теории старения правы по-своему, а каждая из них даёт лишь часть общей картины.

Свободные радикалы

Кислород заставляет железо ржаветь, а масло - становиться прогорклым. В процессе жизнедеятельности в нашем организме образуются агрессивные формы кислорода (свободные радикалы, они же оксиданты) и провоцируют процессы, сходные с ржавлением или гниением, это разложение буквально съедает нас изнутри.

Агрессивные формы кислорода или оксиданты необходимы организму, они участвуют во многих физиологических процессах. Однако часто, число свободных радикалов возрастает сверх меры тогда, они же, разрушают всё, что попадает им "под руку": молекулы, клетки, кромсают ДНК вызывая клеточные мутации.

Свободные радикалы - это молекулы с неспаренным электроном.

Они весьма нестабильны и очень легко вступают в химические реакции. Такая нестабильная частица, сталкиваясь с другими молекулами, "крадет" у них электрон, что существенно изменяет структуру этих молекул.

Пострадавшие молекулы стремятся отнять электрон у других "полноценных" молекул, вследствие чего развивается разрушительная цепная реакция, губительно действующая на живую клетку. Цепные реакции с участием свободных радикалов могут являться причиной многих опасных заболеваний. Негативное действие свободных радикалов проявляется в ускорении старения организма, провоцировании воспалительных процессов в мышечных, соединительных и других тканях.

Установлено, что они отнимают у нас не один десяток лет жизни! Научно доказано что Свободные радикалы, повинны в развитии таких болезней, как: рак, атеросклероз, инфаркт, инсульт, ишемия, атеросклероз, заболевания нервной и иммунной систем и заболевания кожи.

Подробнее об этих маленьких убийцах

Оксиданты образуются в нашем теле четырьмя способами “Фабриками” свободных радикалов служат маленькие продолговатые тельца внутри клетки - митохондрии, ее энергетические станции.

Возникнув в клетке, радикалы повреждают ее внутренние структуры, а также оболочки самих митохондрий, что усиливает утечку.

В результате становится все больше и больше активных форм кислорода, и они разрушают клетку. Свободные радикалы, подобно "молекулярным террористам", "рыщут" по живым клеткам организма, повергая все в хаос.

Надо сказать, что природа заложила в организм собственные средства защиты от избытка свободных радикалов.

Система работает, но через нее все же постоянно проскальзывают отдельные радикалы, которые не успели вступить во взаимодействие с антиокислительными ферментами.

Когда уровень свободных радикалов возрастает (особенно при инфекционных заболеваниях и при длительном пребывании на солнце, во вредном производстве и т.п.), возрастает и потребность организма в дополнительных антиоксидантов, (они действуют как ловушки для свободных радикалов).

Например, курильщикам нужно втрое больше витамина C, чем некурящим, чтобы поддерживать такой же уровень антиоксидантов в крови.

Борьба со свободными радикалами идет несколькими путями: с помощью препаратов - "ловушек", нейтрализующих уже имеющиеся свободные радикалы, и средств, препятствующих образованию свободных радикалов.

Например, биофлавоноиды, открытые Альбертом Сент-Георги обладают способностью связывать свободные радикалы.

Еще в 1990 году Эймс и его коллеги из Калифорнийского университета в Беркли впервые объявили, что в тканях двухлетних крыс вдвое больше повреждений, вызванных свободными радикалами, чем в тканях двухмесячных крысят.

Группа Эймса открыла важнейшую зависимость между окислением, мутацией ДНК и возрастом, т.е. с возрастом мутации накапливаются, или как вариант, возраст (старение) это и есть клеточные мутации, которые со временем накапливаются.

Удалось объяснить и любопытное явление, которое достаточно давно обнаружили исследователи: изменения организма при естественном старении похожи на действие ионизирующей радиации, при воздействии такой радиации происходит разложение воды с образованием активных форм кислорода, которые начинают повреждать клетки.

Лимит Хейфлика

Как известно из начального курса биологии, клетки обладают способностью делиться. И какое то время они это охотно делают.

Однако, со временем, клетки утрачивают способность к самовоспроизведению. Это явление получило название "лимит Хейфлика" . Человеческая клетка в состоянии делиться всего 50-70 раз.

Этому были найдены причины внутри самих клеток. Когда молекула ДНК воспроизводит себе подобную, для нее это не обходится без потерь - кончик молекулы теломер уменьшается. Это происходит при каждом очередном делении, пока наконец он не истощается совсем и молекула ДНК уже не может выполнять свою функцию, а клетка соответственно не может больше делится.

Не смотря на то, что "лимит Хейфлика" это ограничитель не позволяющий жить бесконечно долго, есть мнение, что сей ресурс не вырабатывается за время жизни современного человека. Так Алексей Оловников (первый кто предположил о существовании теломер) говорит: действие теломер доказано, однако к старению сегодня, это не имеет прямого отношения. Каждый курильщик со временем умрет от рака - только не все доживают до момента, когда это произойдет, вероятно так и с теломерами.

Пока неизвестно какое место дальнейшие исследования отведут роли теломеров, в комплексе взаимозависимых процессов приводящих к старению. Учитывая что эта концепция получила широкую огласку, мы расскажем о ней подробнее.

Как было сказанно - клетки человека не могут бесконечно делитьсяч за исключением эмбр, половых, раковых.

Клетки с очень короткими теломерами, часто дают сбои при делении, так как их "укороченные" хромосомы становятся нестабильными.

Хромосомы оказываются менее защищенными перед воздействиями различных повреждающих факторов, так как именно теломера, словно наконечник защищает их.

Фермент теломераза играет важную роль в синтезе теломера на конце молекулы ДНК.

В экспериментах ученые смогли изменить ход процесса старения у клеток путем введения в ДНК генов, отвечающих за образование фермента теломеразы.

Раковые клетки, могут делится бесконечно, в них включен ген теломеразы, т.е. злокачественная клетка становится похожей на половую или эмбриональную, только в этих клетках ген присутствует, и восстанавливает нормальную длину теломера.

Группа исследователей из «Geron Corporation» ввели в клетки ген фермента теломеразы.

Тоесть, начал синтезироваться фермент, удлиняющий теломеры, клетки приобрели способность делиться в 2 раза больше, т.е. продолжительность их жизни возросла.

Клетки человека обладают способностью делиться 50–60 раз. В опытах группы "Герон" после введения теломеразы клетка дает свыше 100 делений. Ракового перерождения клеток не происходит.

Как сообщалось в одном издании корпорации "Герон", исследователи, которые проводят лабораторные опыты с теломеразой, уже продемонстрировали, что можно изменить обычные клетки человека так, чтобы они делились и размножались бесконечно.

В январе 1998 года средства массовой информации во всем мире буквально взорвались сообщениями о том, что группе американских ученых удалось заставить нормальные клетки человека преодолеть "лимит Хейфлика".

Вместо того чтобы состариться и умереть, клетки продолжали делиться.

При этом превращения их в раковые клетки (то есть злокачественной трансформации) не происходило. По всем признакам клетки, были нормальными. В газетах немедленно появились статьи с заголовками вроде "Генетики уткнулись в бессмертие", "Лекарства от старения будут доступны, как аспирин", "Таблетки от старости становятся реальностью" и т.п.

На самом деле, ученые работающие под патронажем "Geron Corporation", с помощью генетических манипуляций заставили в нормальных клетках человека работать фермент теломеразу, активность которой до этого была нулевой.

Таким образом, теломераза и стала причиной спасения ЕДИНИЧНЫХ клеток от одряхления.

Разумеется, не стоит буквально рассматривать гены, кодирующие белковые субъединицы теломеразы, как "гены бессмертия".

К тому же, поддержание длины теломерной ДНК на определённом уровне зависит не только от взаимодействия с ней теломеразы и теломерсвязывающих белков, но и от других, пока неизвестных факторов, регулирующих образование самих компонентов теломер-образующего комплекса.

Но тот факт, что введение в раковые клетки HeLa препаратов, блокирующих РНК-компонент теломеразы, приводит к укорочению теломер и последующей гибели клеток, вселяет надежду на появление новых средств борьбы с раком.

Году Хейфлик наблюдал, как клетки человека, делящиеся в клеточной культуре , умирают приблизительно после 50 делений и проявляют признаки старения при приближении к этой границе.

Данная граница была найдена в культурах всех полностью дифференцированных клеток как человека , так и других многоклеточных организмов . Максимальное число делений клетки различно в зависимости от её типа и ещё сильнее различается в зависимости от организма, которому эта клетка принадлежит. Для большинства человеческих клеток предел Хейфлика составляет 52 деления.

Граница Хейфлика связана с сокращением размера теломер , участков ДНК на концах хромосом . Как известно, молекула ДНК способна к репликации перед каждым делением клетки. При этом имеющиеся у неё на концах теломеры после каждого деления клетки укорачиваются. Теломеры укорачиваются весьма медленно - по несколько (3-6) нуклеотидов за клеточный цикл, то есть за количество делений, соответствующее лимиту Хейфлика, они укоротятся всего на 150-300 нуклеотидов. Таким образом, чем короче у ДНК «теломерный хвост», тем больше делений у неё прошло, а значит - тем старше клетка.

В клетке существует фермент теломеразы , активность которого может обеспечивать удлинение теломер, при этом удлиняется и жизнь клетки. Клетки, в которых функционирует теломераза (половые, раковые), бессмертны. В обычных (соматических) клетках, из которых в основном и состоит организм, теломераза «не работает», поэтому теломеры при каждом делении клетки укорачиваются, что в конечном итоге приводит к её гибели в пределах лимита Хейфлика, потому что другой фермент - ДНК-полимераза - не способен реплицировать концы молекулы ДНК.

В настоящее время предложена эпигенетическая теория старения, которая объясняет эрозию теломер прежде всего активностью клеточных рекомбиназ, активизирующихся в ответ на повреждения ДНК, вызванные, главным образом, возрастной депрессией мобильных элементов генома . Когда после определённого числа делений теломеры исчезают совсем, клетка замирает в определённой стадии клеточного цикла или запускает программу апоптоза - открытого во второй половине 20 века явления плавного разрушения клетки, проявляющегося в уменьшении размера клетки и минимизации количества вещества, попадающего в межклеточное пространство после её разрушения.

Принцип эксперимента

Принципиально, эксперимент проведённый Леонардом Хейфликом в коллаборации с Полом Мурхедом, был довольно простым: смешивали равные части нормальных мужских и женских фибробластов, различавшихся по количеству пройденных клеточных делений (мужские - 40 делений, женские - 10 делений) для того, чтобы фибробласты можно было отличить друг от друга в дальнейшем. Параллельно был поставлен контроль с мужскими 40-дневными фибробластами. Когда же контрольная несмешанная популяция мужских клеток перестала делиться, то смешанная опытная культура содержала только женские клетки, ведь все мужские клетки уже погибли. На основании этого Хейфлик сделал вывод, что нормальные клетки имеют ограниченную способность к делению в отличие от раковых клеток, которые иммортальны . Так было выдвинуто предположение, что так называемые «митотические часы» находятся внутри каждой клетки, на основании следующих наблюдений:

  1. Нормальные фетальные фибробласты человека в культуре способны удваивать популяцию только ограниченное количество раз;
  2. Клетки, которые подверглись криогенной обработке, «помнят», сколько раз они делились до заморозки.

Биологический смысл явления

В настоящее время главенствует точка зрения, связывающая лимит Хейфлика с проявлением механизма подавления опухолеобразования, возникшего у многоклеточных организмов. Другими словами, опухолесупрессорные механизмы, такие как репликативное старение и апоптоз, бесспорно полезны в раннем онтогенезе и зрелости, но побочно являются причиной старения - ограничивают продолжительность жизни в результате накопления дисфункциональных стареющих клеток или избыточной гибели функциональных .

См. также

Примечания

  1. Hayflick L., Moorhead P.S. // Exp. Cell Res., 1961, v. 253, p. 585-621.
  2. Галицкий В.А. (2009). “Эпигенетическая природа старения” (PDF) . Цитология . 51 : 388-397.
  3. L. Hayflick, P. S. Moorhead. The serial cultivation of human diploid cell strains // Experimental Cell Research. - 1961-12-01. - Т. 25 . - С. 585–621 . - ISSN 0014-4827 .
  4. J. W. Shay, W. E. Wright. Hayflick, his limit, and cellular ageing // Nature Reviews. Molecular Cell Biology. - 2000-10-01. - Т. 1 , вып. 1 . - С. 72–76 . -