Каскадное регулирование клапаном схема режимы настройка. Каскадный пид-регулятор температуры в обратном холодильнике реактора. Пример системы каскадного регулирования

Вопросы эффективной работы насосно-силового оборудования в последние годы становятся все более актуальными в связи с ростом тарифов на электрическую энергию, расходы на которую в общей структуре затрат могут быть очень значительными.

Водоснабжение и водоотведение относятся к отраслям промышленности с интенсивным использованием насосного оборудования, доля электроэнергии потребляемой насосами составляет более 50% от общего энергопотребления. Поэтому вопрос снижения затрат на электроэнергию для водоснабжающих организаций заключается, прежде всего, в эффективном использовании насосного оборудования.

В среднем КПД насосных станций составляет 10-40 %. Несмотря на то, что КПД наиболее часто применяемых насосов, составляет от 60% для насосов типа К и КМ и более 75% для насосов типа Д.

Главные причины неэффективного использования насосного оборудования следующие:

Переразмеривание насосов, т.е. установка насосов с параметрами подачи и напора большими, чем требуется для обеспечения работы насосной системы;

Регулирование режима работы насоса при помощи задвижек.

Основные причины, которые приводят к переразмериванию насосов следующие:

На стадии проектирования закладывается насосное оборудование с запасом на случай непредвиденных пиковых нагрузок или с учетом перспективного развития микрорайона, производства и т.д. Нередки случаи, когда подобный коэффициент запаса может достигать 50%;

Изменение параметров сети - отступления от проектной документации при строительстве, коррозия труб во время эксплуатации, замена участков трубопроводов при ремонте и т.п.;

Изменение объемов водопотребления в связи с ростом или сокращением численности населения, изменением количества промышленных предприятий и т. д.

Все эти факторы приводят к тому, что параметры насосов, установленных на насосных станциях, не соответствуют требованиям системы. Для обеспечения требуемых параметров насосной станции по подаче, напору в системе эксплуатирующие организации прибегают к регулированию потока при помощи задвижек, что приводит к значительному увеличению потребляемой мощности как из-за работы насоса в зоне низкого КПД так и за счет потерь при дросселировании.

Методы снижения энергопотребления насосных агрегатов

Оптимальное энергопотребление оказывает существенное влияние на жизненный цикл насоса. Расчет технико‐экономического обоснования конкурентоспособности выполняется по методике стоимости жизненного цикла, разработанного профильными западными институтами.

В таблице №1 рассматриваются основные методы, которые, по данным Гидравлического института США и Европейской ассоциации производителей насосов, приводят к снижению энергопотребления насосов, а также дана величина потенциальной экономии.

Таблица №1. Меры по снижению энергопотребления и их потенциальный размер.

Методы снижения энергопотребления в насосных системах

Размер снижения энергопотребления

Замена регулирования подачи задвижкой на

Снижение частоты вращения

Каскадное регулирование при помощи параллельной установки насосов

Подрезка рабочего колеса, замена рабочего колеса

Замена электродвигателей на более эффективные

Замена насосов на более эффективные


Основной потенциал по энергосбережению заключается в замене регулирования подачи насоса задвижкой на частотное или каскадное регулирование , т.е. применении систем способных адаптировать параметры насоса под требования системы. При принятии решения о применении того или иного способа регулирования необходимо учитывать, что каждый из этих способов также следует применять, отталкиваясь от параметров системы, на которую работает насос.

Рис. Каскадное регулирование режима работы трех насосов, установленных параллельно при работе на сеть с преимущественно статической составляющей.

В системах с большой статической составляющей применение каскадного регулирования, т.е. подключение и отключение необходимого количества насосов позволяет осуществлять регулирование режима работы насосов с высокой эффективностью.

Каскадное регулирование - это регулирование, в котором два или больше контуров регулирования соединены так, чтобы выход одного регулятора корректировал уставку другого регулятора.

На рисунке выше приведена блок-схема, которая иллюстрирует понятие каскадного регулирования. Блоки на диаграмме фактически представляют компоненты двух контуров регулирования: ведущий контур, который составлен из элементов системы регулирования A, E, F, и G и ведомый контур, который составлен из элементов системы регулирования A, B C, и D. Выход регулятора ведущего контура является заданием (уставкой) для регулятора ведомого контура регулирования. Регулятор ведомого контура вырабатывает управляющий сигнал для исполнительного механизма.

Для процессов, которые имеют значительные характеристики запаздывания (емкость или сопротивление, которые замедляют изменения переменной), ведомый контур регулирования каскадной системы может обнаружить рассогласование в процессе раньше и уменьшить тем самым время, требующееся для устранения рассогласования. Можно сказать, что ведомый контур регулирования «делит» запаздывание и уменьшает воздействие возмущения на процесс.

В системе каскадного регулирование используется больше, чем один первичный чувствительный элемент, и регулятор (в ведомом контуре регулирования) получает больше, чем один входной сигнал. Следовательно, система каскадного регулирования - это многоконтурная система регулирования.

Пример системы каскадного регулирования


В примере выше контур регулирования будет в итоге ведущим контуром при построении системы каскадного регулирования. Ведомый контур будет добавлен позже. Цель этого процесса состоит в том, чтобы нагреть воду, проходящую через внутреннее пространство теплообменника, обтекая трубы, по которым пропускается пар. Одна из особенностей процесса - то, что корпус теплообменника имеет большой объём и содержит много воды. Большое количество воды обладает ёмкостью, позволяющей сохранять большое количество теплоты. Это означает, что, если температура воды на входе в теплообменник изменится, эти изменения проявятся на выходе теплообменника с большим запаздыванием. Причиной запаздывания является большая ёмкость. Другой особенностью этого процесса является то, что паровые трубы оказывают сопротивление передаче теплоты от пара внутри труб к воде снаружи труб. Это означает, что будет иметься запаздывание между изменениями в паровом потоке и соответствующими изменениями температуры воды. Причиной этого запаздывания является сопротивление.

Первичный элемент в этом контуре регулирования контролирует температуру воды на выходе из теплообменника. Если температура воды на выходе изменилась, соответствующие физические изменения первичного элемента измеряются измерительным преобразователем, который преобразовывает значение температуры в сигнал, посылаемый регулятору. Регулятор измеряет сигнал, сравнивает его с уставкой, вычисляет разность и затем вырабатывает выходной сигнал, который управляет регулирующим клапаном на паровой линии, являющимся конечным элементом контура регулирования (регулирующим органом). Паровой регулирующий клапан или увеличивает, или уменьшает поток пара, обеспечивая возвращение температуры воды к уставке. Однако, из-за характеристик запаздывания процесса, изменение температуры воды будет медленным, и потребуется длительное время прежде, чем контур регулирования сможет считывать на сколько температура воды изменилась. К тому времени, могут произойти слишком большие изменения температуры воды. В результате, контур регулирования выработает избыточно сильное управляющее воздействие, что может привести к отклонению в противоположную сторону (перерегулированию), и снова будет "ждать" результат. В связи с медленной реакцией подобно этой, температура воды может циклически колебаться вверх и вниз в течение долгого времени прежде, чем придёт к устойчивому состоянию, возвратившись на значение уставки.


Переходной процесс системы регулирования улучшается, когда система дополняется вторым контуром каскадного регулирования, как показано на рисунке выше. Добавленный контур - это ведомый контур каскадного регулирования.

Теперь, когда изменяется расход пара, эти изменения будут считываться чувствительным элементом расхода (B) и измеряться измерительным преобразователем (C), который посылает сигнал ведомому регулятору (D). В то же самое время, температурный чувствительный элемент (E) в ведущем контуре регулирования воспринимает любое изменение температуры воды на выходе теплообменника. Изменения эти измеряются измерительным преобразователем (F), который посылает сигнал ведущему регулятору (G). Этот регулятор выполняет функции измерения, сравнения, вычисления и производит выходной сигнал, который посылается ведомому регулятору (D). Этот сигнал корректирует уставку ведомого регулятора. Затем ведомый регулятор сравнивает сигнал, который он получает от датчика расхода (C), с новой уставкой, вычисляет разность и вырабатывает корректирующий сигнал, который посылается на регулирующий клапан (A), чтобы корректировать расход пара.

В системе регулирования с добавлением к основному контуру ведомого контура регулирования любое изменение расхода пара немедленно считывается дополнительным контуром. Необходимая корректировка выполняется почти сразу, прежде, чем возмущение от парового потока воздействует на температуру воды. Если произошли изменения температуры воды на выходе из теплообменника, чувствительный элемент воспринимает эти изменения и ведущий контур регулирования корректирует уставку регулятора в ведомом контуре регулирования. Другими словами, он устанавливает контрольную точку или "смещает" регулятор в ведомом контуре регулирования так, так, чтобы скорректировать расход пара, с целью обеспечения заданной температуры воды. Однако, это реакция регулятора ведомого контура регулирования на изменения расхода пара уменьшает время, требуемое для компенсации влияния возмущения со стороны парового потока.

Применяется на сложных объектах, когда на выходной параметр j влияет несколько возмущений, измерить которые не представляется возможным. В этом случае выбирается какой-либо объект с промежуточным параметром j 1 , который измерить можно, и по нему строится регулирование объекта. Получаем первый контур регулирования. Этот регулятор не учитывает часть действующих на сложный объект возмущений, которые влияют на выходной параметр j. По параметру j строится второй контур регулирования. Регулятор второго контура управляет работой регулятора первого контура, изменяя ему задание таким образом, чтобы его работа скомпенсировала влияние возмущений на выходной параметр j. В этом состоит смысл каскадного регулирования (1-й и 2-й каскады регулирования).

Рис. 5.18. Схема САР уровня воды в барабане котла:

Н б – уровень воды в барабане котла; D пп – расход перегретого пара (l); W в – расход питательной воды (m об); ЗД – задатчик (задает значение уровня Н б,0); ВЭК – водяной экономайзер; ПП – пароперегреватель

Рассмотрим это на схеме регулирования сложного объекта, состоящего из последовательного соединения трех объектов с возмущениями (рис. 5.19).

Регулятор промежуточного параметра j 1 стремится поддерживать его постоянным и равным j 1,0 . Это 1-й каскад регулирования.

Этот регулятор учитывает только возмущение l 1 . Возмущения l 2 и l 3 будут влиять на выходной параметр j. Регулятор j (2-й каскад регулирования) будет поддерживать параметр j постоянным j 0 за счет того, что через задачик переменного задания (ЗПЗ ) будет изменять задание первому контуру на величину ±Dj 1 . Получив это добавление задания, регулятор j 1 будет так изменять параметр j 1 , чтобы скомпенсировать влияние возмущений l 2 и l 3 на выходной параметр j. Регулятор j (2-го каскада) как бы корректирует работу первого регулятора (по j 1), поэтому его называют корректирующим регулятором (КР) .

Рис. 5.19. Схема каскадного регулирования:

ЗД – задатчик; ЗПЗ – задатчик переменного задания; КР – корректирующий регулятор

Примером каскадного регулирования может служить распределение тепловой нагрузки между несколькими котлами, работающими на общую паровую магистраль (рис. 5.20).

Рис. 5.20. Регулирование тепловой нагрузки котлов, работающих на общую паровую магистраль: РСЗ – размножитель сигналов задания; ГКР – главный корректирующий регулятор

В паровую магистраль два котла подают пар с расходами D к1 и D к2 . Из паровой магистрали пар поступает к турбинам Т 1 ; Т 2 и Т 3 с расходами D Т1 ; D Т2 и D Т3 . Если существует баланс поступающих расходов пара от котлов и уходящих из магистрали к турбинам, то давление пара в магистрали р м не будет изменяться (р м,0).


Если турбины начинают потреблять больше или меньше пара, то баланс притока пара в магистраль и его расхода из магистрали нарушается, и давление р м необходимо регулировать. Промежуточными объектами в этой системе являются котлы К 1 и К 2 , а промежуточными параметрами – тепловые нагрузки котлов D q 1 и D q 2 . По ним строится регулятор тепловой нагрузки (РТН ), который управляет подачей топлива (газа). Это первый каскад регулирования.

Регуляторы поддерживают постоянными тепловые нагрузки D q 1,0 и D q 2,0 , а тем самым и расходы пара D к1 и D к2 . Если давление в магистрали р м начинает изменяться (параметр j), вступает в работу регулятор давления р м (это 2-й каскад), который в зависимости от величины отклонения давления ±Dр м =(р м - р м,0) вырабатывает на выходе сигнал, и через размножитель сигналов задания (РСЗ ) управляет работой регуляторов тепловой нагрузки котлов (РТН ), изменяя им задание на величину ±DD q . В соответствии с этим сигналом регуляторы РТН изменяют подачу топлива на котлы и тем самым выработку расходов пара D к1 и D к2 таким образом, чтобы восстановить давление в магистрали р м.

В том случае, если и эти способы регулирования не дают желаемых результатов, идут на ограничение возмущений l.

Рис.1. Структура каскадного ПИД-регулятора температуры в рубашке реактора

Рис.2. Структура каскадного ПИД-регулятора температуры в обратном холодильнике реактора


1. Регуляторы

Общие моменты

– Подсистема регулирования состоит из четырех ПИД-регуляторов, образующих два каскада регулирования (Рис.1., Рис.2.);

– Управление ведущим и ведомым регуляторами (изменение режима работы и задания) разрешается всегда, независимо от того, в работе реактор или нет как с мнемосхемы "Состояние установки", так и из окон регуляторов;

Резервирование регуляторов

– Для повышения надежности в системе предусмотрено резервирование регуляторов. Основным считается программный регулятор, резервным – аппаратный (SIPART DR22).

– Изменение коэффициентов аппаратного регулятора (коэффициент передачи, постоянная времени интегрирования и постоянная времени дифференцирования) в соответствии с настройками программного регулятора производится по нажатию кнопки "Применить" в окне настроек программного регулятора;

Структура программного регулятора

Структура программного регулятора приведена на Рис.1., Рис.2.

Управление регулятором

– Управление всеми четырьмя регуляторами реактора осуществляется из окон регуляторов или с мнемосхемы "Состояние установки". Внешний вид окон приведен на Рис.1., Рис.2.

– По каждому из четырех регуляторов реактора существует индивидуальное окно, имеющее две формы: основную – "окно управления регулятором" и вспомогательную – "окно настроек регулятора". Переключение между этими формами производиться по нажатию кнопок или в верхней правой области окон.

– По нажатию кнопки "RAMP" (есть только на окне ведущего регулятора по холодильнику) открывается окно настройки и управления рэмпом (см. Рис.2.).

– Сам рэмп – это линейное изменение задания по температуре от значения "Начальное значение" до значения "Конечное значение" за время "Время перехода";

– Окно настройки и управления рэмпом предназначено для наблюдения за ходом рэмпа, а также предоставляет оператору возможность управления рэмпом;

– В исходном состоянии при неактивном рэмпе кнопка "Стоп" нажата, кнопки "Старт" и "Пауза" отжаты, кнопка "Пауза" недоступна, поля "Конечное значение" и "Время перехода" доступны для ввода, в поле "Начальное значение" отображается текущее значение температуры, в полях "Прошедшее время" и "Оставшееся время" – нуль;

– При активном рэмпе кнопки "Стоп" и "Пауза" отжаты, кнопки "Старт" нажата, кнопка "Пауза" доступна, все поля недоступны для ввода.

В поле "Начальное значение" отображается значение температуры, с которого было начато плавное изменение задания регулятора после нажатия кнопки "Старт" или запуска рэмп системой.

В поле "Конечное значение" отображается значение задания регулятора, которое будет установлено после завершения рэмпа.

В поле "Время перехода" отображается общее время рэмпа, в поле "Прошедшее время" – прошедшее время рэмпа, в поле "Оставшееся время" – оставшееся время рэмпа;

– По истечении времени "Время перехода" задание регулятора равно значению "Конечное значение", поля ввода и кнопки принимают исходное состояние;

Проведение рэмпа оператором

– В системе существует возможность проведения рэмпа по команде оператора с настройками, заданными оператором;

– Перед запуском рэмпа оператор вводит требуемые значения в поля "Конечное значение" и "Время перехода";

– От начала фазы полимеризации до момента начала первой плановой дополнительной дозировки воды оператору в поле "Конечное значение" запрещено вводить значение большее, чем текущая температура в реакторе.

Если реактор в работе, до начала фазы полимеризации и от момента начала первой плановой дополнительной дозировки воды, поля ввода в окне настройки и управления рэмпом недоступны для ввода оператору, кнопки управления рэмпом недоступны для нажатия оператору.

Если реактор не в работе, поля ввода в окне настройки и управления рэмпом доступны для ввода оператору, кнопки управления рэмпом доступны для нажатия оператору;

– Для запуска рэмпа оператор нажимает кнопку "Старт", кнопка "Стоп" при этом отжимается";

– Во время рэмпа в поле вывода "Начальное значение" отображается значение температуры, с которого было начато плавное изменение задания регулятора после нажатия кнопки "Старт";

– Если во время проведения рэмпа требуется изменить его параметры (конечное значение или время перехода) необходимо нажать кнопку "Пауза". Кнопка "Старт" в этом случае остается нажатой, "Стоп" – отжатой, а поля ввода "Конечное значение" и "Время перехода" доступными для ввода. Изменение подпрограммой RAMP задания регулятора и отсчет прошедшего времени в поле "Прошедшее время" при этом будет временно приостановлено;

– После того, как новые параметры рэмпа введены в поля ввода, оператор отжимает кнопку "Пауза", автоматически пересчитывается значение в поле вывода "Оставшееся время" и возобновляется процесс плавного изменения задания с новыми параметрами и отсчет времени рэмпа в поле "Прошедшее время";

– Расчет нового значения в поле "Оставшееся время" производиться следующим образом: . Если рэмп до нажатия кнопки "Пауза" длился больше времени, чем ввели в поле "Время перехода" во время паузы, то оставшееся время принимается равным нулю, задание регулятора устанавливается равным значению в поле "Конечное значение";

– В двух случаях: по нажатию кнопки "Старт" и по отжатию кнопки "Пауза" производится установка задания ведущему регулятору в рубашке на один градус меньше чем "Конечное значение" рэмпа;

Функционирование регуляторов

– Все четыре регулятора реактора имеют два режима работы: ручной и автоматический. В ручном режиме обратная связь разомкнута, ПИД-алгоритм не функционирует, оператор и система имеют возможность изменять управляющее воздействие на клапан. В автоматическом режиме обратная связь замкнута, работает ПИД-алгоритм, оператор и система имеют возможность изменять задание по температуре;

– Четыре регулятора реактора объединены в две каскадные схемы регулирования, в каждой из которых есть ведущий и ведомый регулятор. Каскад считается замкнутым, если ведомый и ведущий регуляторы находятся в автоматическом режиме;

– Ведущий регулятор не может находиться в автоматическом режиме управления, если ведомый находится в ручном режиме. Если оператор или система переключает ведомый регулятор в ручной режим, ведущий также переключится в ручной режим, каскад размыкается. Если оператор или система переключает ведомый регулятор в автоматический режим, режим ведущего не изменяется (остается в ручном), каскад остается не замкнутым. Ведущий регулятор можно переключить в автоматический режим только если ведомый находиться в автоматическом режиме;

– При включении ведущего регулятора в автоматический режим обеспечивается безударность замыкания каскада путем предустановки управляющего воздействия ведущего регулятора равного заданию ведомого регулятора.

Обращаем Ваше внимание на то, что гарантия предприятия-изготовителя действует только в случае, если монтаж и ввод в эксплуатацию были произведены аттестованным заводом Protherm сотрудником специализированной организации. При этом наличие сертификата Protherm не исключает необходимости дополнительной аттестации персонала специализированной организации в соответствии с действующими на территории Российской Федерации законодательными и нормативными актами, касающимися сферы деятельности данной организации.

Выполнение гарантийных обязательств, предусмотренных действующим законодательством, в том регионе, где было установлено оборудование Protherm, осуществляет предприятие-продавец Вашего аппарата или связанная с ним договором организация, уполномоченная специальным договором выполнять гарантийный и негарантийный ремонт изделий Protherm. Ремонт может также выполнять организация, являющаяся авторизованным сервисным центром Protherm.

Выполняющая гарантийный либо негарантийный ремонт оборудования Protherm компания в течение гарантийного срока бесплатно устранит все выявленные ею недостатки, возникшие по вине завода-изготовителя. Конкретные условия гарантии и длительность гарантийного срока устанавливаются и документально фиксируются при продаже и вводе в эксплуатацию аппарата. Обратите внимание на необходимость заполнения раздела "Сведения о продаже", куда вносятся серийный номер аппарата, отметки о продаже и соответствующие печати, даты продажи и подписи продавца в гарантийных талонах, находящихся на обороте паспорта изделия.

Гарантия завода-изготовителя не распространяется на изделия, неисправности которых вызваны транспортными повреждениями, нарушением правил транспортировки и хранения, применением незамерзающих теплоносителей, загрязнениями любого рода, в том числе солями жёсткости, замерзанием воды, неквалифицированным монтажом и/или вводом в эксплуатацию, несоблюдением инструкций по монтажу и эксплуатации оборудования и принадлежностей к нему и прочими не зависящими от изготовителя причинами, а также на работы по монтажу и обслуживанию аппарата.

Установленный срок службы исчисляется с момента ввода в эксплуатацию и указан в прилагаемой к конкретному изделию документации.

Завод Protherm гарантирует возможность приобретения любых запасных частей к данному изделию в течение минимум 8 лет после снятия его с производства.

На оборудование Protherm и принадлежности к ниму завод-изготовитель устанавливает срок гарантии 2 года с момента ввода в эксплуатацию, но не более 2,5 лет с момента продажи конечному потребителю.
Гарантия на запасные части составляет 6 месяцев с момента розничной продажи при условии установки запасных частей аттестованным Protherm специалистом.

При частичном или полном отсутствии сведений о продаже и/или вводе в эксплуатацию, подтверждённых документально, гарантийный срок исчисляется с даты изготовления аппарата. Серийный номер изделия содержит сведения о дате выпуска: цифры 3 и 4 - год изготовления, цифры 5 и 6 - неделя года изготовления.

Организация, являющаяся авторизованным сервисным центром Protherm, имеет право отказать конечному потребителю в гарантийном ремонте оборудования, ввод в эксплуатацию которого был выполнен третьей стороной, если специалистом авторизованного сервисного центра будут обнаружены указанные выше причины, исключающие гарантию завода- изготовителя.